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Introduction

Salicylic acid (SA) is one of the hormone-like endogenous regu-
lators that is present in plants either in a free state or in the form 
of methylated glucose-ester, glycosylated, or amino acid conjugates 
[1]. It acts as a signaling molecule and affects many physiological 
and biochemical processes under abiotic stress and non-stress 
conditions. SA influences seed germination, establishment of seed-
ling, cell growth and expansion and also stimulates the activity of 
enzymes; synthesis of flavonoid and photosynthesis process under 
adverse environmental conditions [2-5]. 

Due to natural processes and anthropogenic, the soil is rapidly contaminated with the continuous accumulation of salts, which 
affects the crop production worldwide. Therefore, it is essential to exploit the modern techniques to improve the tolerant of plants to 
salinity. The present experiment was designed to study the effect of SA on (1) seed germination parameters and (2) physio-biochem-
ical changes in wheat seedlings under NaCl stress. NaCl exhibited reduced germination parameters (germination %, vigor index and 
mean germination time), seedlings height, content total chlorophyll and total carbohydrates and increased production of reactive 
oxygen species [detected using the fluorescent probe 2',7'-dichlorodihydrofluorescein diacetate (DCF-DA) for H2O2 and dihydro-
ethidium (DHE) for O2•-] in roots, content of malondialdehyde and proline, and chlorophyll degradation. However, wheat seedlings 
treated with SA showed increased seed germination traits and plant height by increasing proline and total soluble carbohydrates by 
suppressing ROS formation in roots and leaf-chlorophyll degradation. 

It is well established that SA plays several new roles in plants as 
well as animals. Several investigations proved that SA is involved in 
tolerance of salt stress [6], water stress [4] and heavy metals [7-9]. 
SA improves salt stress resistance in soybean [6], rice [10], Dian-
thus superbus L. [11], and in cabbage [12]. However, the processes 
of physiological and biochemical involved in tolerance of plants 
to salt stress are enhanced by SA still needs to be studied further 
[13,14].

Materials and Methods
Preparation of seeds and treatments

Under laboratory conditions, an experiment was performed on 
wheat (Triticum aestivum L. var. ‘Samma’) obtained from a local 
market of Riyadh, Saudi Arabia. The sterilized seeds were placed 
in Petri dish (Size 12 in) having a double layer of filter papers. One 
hundred fifty sterilized seeds were placed in each Petri Dish and 
all Petri dishes were arranged in a simple randomized design with 
single factor and 4 replicates. Treatments of SA were applied with 
and without NaCl as follows (1) 0 µM SA + 0 mM NaCl (control), 
(2) 100 µM SA + 0 mM NaCl, (3) 0 µM SA + 100 mM NaCl and (4) 
100 µM SA + 100 mM NaCl. After supplying treatments, each Petri 
Dish was sealed with paraffin tape to avoid evaporation. The Petri 
dishes were kept inside an incubator at 28 ± 3°C. 

Among the abiotic stress, salt stress limits the plant growth and 
development by disturbing many physiological and biochemical 
processes, such as osmotic adjustment, nutrient homeostasis, bio-
molecules synthesis, photosynthesis, respiration, enzymes activity 
and water balance [15]. In many studies reported that application 
of NaCl decreased seed germination in eggplant [16] and Origanum 
compactum (Benth) [17]. Salt stress suppresses not only seed ger-
mination but also affects root and shoot growth and root and shoot 

fresh weight of four vegetable species [18]. Therefore, present ex-
periment was aimed to study the effect of SA on (1) seed germi-
nation parameters and (2) physio-biochemical changes in wheat 
seedlings under NaCl stress. 

Germination of seeds was noted every day. After every 3 d, all 
treated seedlings were transferred on sterile filter papers in Petri 
dish. Same concentrations and volume of treatments were sup-
plied. The potential of seed germination was assessed in terms of 
percent seed germination, mean germination time and vigor index 
(VI). The physiological and biochemical characteristics of seed-
lings of wheat were measured.
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Statistical analysis 

All the treatments had four replicates and each Petri dish was 
treated as one replicate. The statistical analysis was performed us-
ing SPSS v17 statistical software (SPSS Inc., Chicago, IL, USA). The 
data were expressed as means ± standard error and means were 
statistically compared by Duncan’s multiple-range test (DMRT) at 
the p < 0.05% level.

Determination of growth characteristics

The seed germination rate was recorded every day from 2 to 14 
d. Seeds were considered as germinated when their radicle showed 
at least 2-mm length. 

A fluorescent probe 2'-7'- dichlorofluorescein diacetate (DCF-
DA) was used to detect H2O2 in root of wheat seedlings according 
to the method described by Tarpey., et al [21]. Roots image was 
taken using a fluorescence microscope at excitation and emission 
wavelengths of 480 and 530 nm.

Histochemical detection of ROS in roots of wheat seedlings

The content of proline in the leaf tissues of wheat seedlings was 
measured spectrophotometrically following the method described 
by Bates., et al. [26]) via reaction with ninhydrin. 

Proline content

Germination percentage (GR%) was calculated with the suitable 
formula: 

Germination (%) = (Number of seeds sprouted/Total number of 
seeds) ×100

Mean germination time and seedling vigor index were deter-
mined according to the method described by Matthews and Kha-
jeh-Hosseini [19] and Vashisth and Nagarajan [20], respectively. 

At the end of the 14 d, samples were taken for physiological and 
biochemical parameters determination.

The dihydroethidium (DHE) was used to detect superoxide 
radicals (O2•-) in the roots wheat seedlings following the method 
described by Rodriguez-Serrano., et al [22]. The signal of DHE was 
captured in the roots as red fluorescence (490 nm excitation; 520 
nm emission).

Total soluble carbohydrates (TSC) concentration was estimated 
by taking absorbance at 490 nm, as described by Dubois., et al. 
[23], using glucose as a standard. TSC was presented as mg g-1 dry 
weight (DW).

Total soluble carbohydrates content 

To measure lipid peroxidation in seedlings, malondialdehyde 
(MDA) content was determined using the procedure of Dhindsa., 
et al [24]. MDA was calculated according to Heath and Packer [25].

Malondialdehyde content

Leaf of wheat seedlings was taken and powdered in liquid nitro-
gen using mortar and pestle. Protein was isolated by homogenizing 
the leaf powder in a 1.0 mL lysis buffer containing 25 mM HEPES 
buffer (pH 7.5), 500 mM NaCl, 5 mM MgCl2, 1 mM EDTA, 0.2% Non-
idet P-40 (v/v) and 1 mM PMSF. Cell debris was pelleted by cen-
trifugation at 12,000 rpm for 10 minutes at 4°C. Protein was quan-
tified according the method described by Bradford [27], protein 
content was measured with BSA as a standard. An equal amount 
of each protein sample was resolved on 7.5% SDS-PAGE and elec-

Protein isolation and SDS-Page

trophoresed at 70 V using a Bio-Rad Mini-Protein Tetra Cell, 4 Gel 
System (Bio-Rad Laboratories, Hercules, USA).

Results

Under both conditions (salinity and non-salinity), application 
of SA proved best for all germination parameters (Figure 1A-C). 
Treatment of SA increased percent germination by 9.07%, vigor 
index by 26.01% and mean germination times by 31.55 over the 
respective controls under non-stress condition. However, applica-
tion of NaCl decreased all germination traits as compared to con-
trol. While, application of SA increased percent germination by 
13.05%, vigor index by 68.60% and mean germination times by 
39.74% over the respective NaCl treatments. Figure 2 exhibits that 
application of SA improved plant length under both salinity and 
non-saline conditions. 
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Figure 1: Effect of salicylic acid on (A) percent germination, 
(B) vigor index and (C) mean germination time of wheat.

Figure 3 shows that production of H2O2 and O2•- was detected 
in root of SA treated-wheat seedlings under salt stress and non-
stress conditions. Under non-stress condition, application of SA 
exhibited low levels of green and red signals for H2O2 and O2•- re-
spectively as compared to control and NaCl treatment. The highest 
levels of signal were detected under NaCl stress condition. How-
ever, application of SA exhibited a weak signal as compared to NaCl 
treatment. 

Figure 2: Effect of salicylic acid on the length of  
wheat seedlings under NaCl stress.

Figure 3: In situ visualization of ROS formation in primary roots using the fluorescent probe DCF-DA and 
DBE for (A) H202 and (B) (02•-) respectively under salinity stress. 

Figure 4: Effect of salicylic acid on (A) Total Chlorophyll and (B) chlorophyll degradation of wheat. 

Figure 3

Figure 4
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Application of SA significantly decreased accumulation of malo-
ndialdehyde in wheat seedlings under both salt stress and non-
stress conditions (Figure 4). However, application NaCl substan-
tially increased malondialdehyde content. While, application of 
SA decreased malondialdehyde content by 39.31% over the NaCl 
treatment. 

Figure 6 (A-B) reveals that application of SA significantly in-
creased proline and Total soluble carbohydrates accumulation 
as compared to the control. Also, application of NaCl increased 
proline accumulation. However, under NaCl stress, application of 
SA improved further accumulation of proline. Under non-stress, 
application of SA increased proline by 65.31% over the control. 
While, under NaCl stress, application of SA increased proline fur-
ther by 116.21% over NaCl treatment. Application of SA increased 
Total soluble carbohydrates content by 66.68% over the control 
under non-stress condition, while NaCl treatment increased To-
tal carbohydrates content as compared to control. Moreover, ap-
plication of SA increased Total soluble carbohydrates content by 
25.86% under NaCl stress.

Figure 5: Effect of salicylic acid on (A) Total Chlorophyll and 
(B) chlorophyll degradation of wheat.

Application of SA proved best for the biosynthesis of Total 
chlorophyll under both conditions (Figure 5A). Application of SA 
increased Total chlorophyll by 35.43% over the control. However, 
application of NaCl decreased Total chlorophyll content. While, ap-
plication of SA increased 74.05% over the NaCl treatment. Figure 
5B shows that the lowest degradation of chlorophyll was recorded 
in wheat seedlings treated with SA under both salt stress and non-
stress conditions. Application of SA decreased chlorophyll degrada-
tion by 43.19 under non-stress, and by 67.37% under salt stress 
condition.

Figure 6: Effect of salicylic acid on (A) proline content and 
(B) Total soluble carbohydrates content in leaf of wheat.

Changes in proteins profile in the leaves of wheat plant seedling 
treated with SA under NaCl stress and non-stress conditions were 
analyzed by SDS-PAGE as shown in figure 7. Under NaCl stress, 
treated seedlings showed 4 proteins bands with molecular weight 
180, 39, 37 and 15 KDa as compared to control. Under NaCl stress, 
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wheat seedlings exhibited 2 bands of proteins with low molecular 
weight i.e. 15 and 12 KDa as compared to NaCl treated plants. 

Figure 7: Effect of salicylic acid on protein profile of 
wheat under NaCl stress. Leaf proteins extracted from 
different treated plants were ran in separate lanes after 

loading equally to each lane. 

Discussion

Under both salinity and non-salinity conditions, application 
of SA significantly improved germination, physiological and bio-
chemical characteristics of wheat seedlings (Figure 1-6). However, 
salinity reduced all these parameters except content of malondial-
dehyde, proline and chlorophyll degradation.

Healthy seed germination provides a foundation for better plant 
growth and development under normal and different environmen-
tal conditions. In the present study, application of NaCl impaired 
the seed germination characteristics (Figure 1A-C). It may be due to 
low water potential that prevent water uptake and nutrients avail-
ability for germination [28,29]. Also, high salt in solution may cause 
toxicity to embryo [28]. The seed germination is also inhibited by 
reduced α-amylase activity due to salinity via reduced bioactive 
gibberellin content [30]. Interestingly, application of SA improved 
all germination characteristics (percent germination, germination 
vigor and mean germination time) under both conditions. An in-
crease in these traits may due to the roles of SA in increasing of 
oxygen, nutrients uptake, and activity of α-amylase activity.

In this investigation, we observed that the height of wheat seed-
lings inhibited with the application of NaCl (Figure 2). It may be 
due to the inhibitory effects of NaCl on plant growth metabolisms. 
However, application of SA proved beneficial in improving seed-
lings height under both salt stress and non-stress conditions. Basal 
application of SA through the rooting medium exhibited an ame-
liorating and growth inducing effects under stress and non-stress 
conditions by decreasing over-production of ROS in roots (Figure 
3). An increase in seedlings height may be due to the roles of SA 
in nutrients mobilization and also an accumulation of abscisic acid 
and indole-3-acetic acid, resulting in improved protective and pro-
moting effects of SA [15,31]. 

The accumulation of ROS (H2O2 and O2•-) is the reason for the 
oxidative damage in plants under stresses. Also, malondialdehyde 
accumulation represents a marker for lipid peroxidation. The ac-
cumulation of ROS in roots and malondialdehyde content in the 
leaf of wheat seedlings increased under NaCl stress (Figure 3 and 
4). Exogenous supply of SA to rooting medium significantly sup-
pressed the formation of ROS and malondialdehyde accumulation. 
It may be due to the accumulation of proline (Figure 6A) and anti-
oxidant system, as they are responsible for ROS scavenging, result-
ing in increased tolerance to salinity by reducing lipid peroxida-
tion [15,31]. 

Biosynthesis of chlorophyll in plant improves photosynthesis 
results better dry matter production in plants. Under NaCl stress, 
wheat seedlings showed  decreased total chlorophyll content and 
increased chlorophyll degradation (Figure 5A and B). However, 
SA supplied to the growth medium improved the accumulation of 
total chlorophyll and suppressed chlorophyll degradation. It may 
be due to the protective role of SA that decrease chlorophyll deg-
radation through regulating ascorbate and glutathione pool [33]. 
An increase in total chlorophyll content provides better photosyn-
thesis, which may be one of the reasons for better seedlings height 
(Figure 2). 

Under NaCl stress, accumulation of proline, total soluble car-
bohydrates content and proteins was significantly affected (Figure 
6A-B and 7). NaCl-treated wheat seedlings exhibited reduced total 
carbohydrates content and increased proline content. However, 
seedlings treated with and without NaCl improved total soluble 
carbohydrates and also proline content. The levels of increase in 
the content of total soluble carbohydrates and proline in leaves 
under salinity and non-salinity might be due to SA that increases 
photosynthesis by increasing chlorophyll (Figure 5A), activity of 
Rubisco and CA, and decreasing degradation of Chls (Figure 5B) 
[34]. Proline acts as an antioxidant by scavenging hydroxyl radi-
cal and protecting the structure and function of DNA, protein and 
membranes [35]. According to Azooz., et al. [36] that the accumu-
lation of proteins may be used by the plants to fight against the 
salinity. 

Conclusion

It can be concluded on the basis of obtained results that plant 
treated with NaCl exhibited reduced germination parameters, 
seedlings height, content of total chlorophyll and increased  total 
carbohydrates, production of ROS (H2O2 and O2•-) in roots, con-
tent of malondialdehyde and proline, and chlorophyll degradation. 
However, wheat seedlings treated with SA showed increased seed 
germination traits and plant height by increasing proline and total 
soluble carbohydrates by suppressing ROS formation in roots and 
leaf-chlorophyll degradation. 
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