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The prevalence of tuberculosis (TB) caused by Mycobacterium tuberculosis (Mtb) particularly the occurrence of multi-drug resis-
tant and extensively-drug resistant strains of Mtb has prompted intense efforts to develop new anti-TB drugs. The enzyme maltosyl-
transferase GlgE of M. tuberculosis was determined to be a potential drug target. In this work, homology model of Mtb maltosyltrans-
ferase GlgE was generated based on eight reported protein structures with similar amino acid sequence. A pharmacophore based on 
the model was used to screen two databases of natural products. The virtual screening top hit, F_2.726 with binding energy (BE) of 
-322.83 kcal/mol, and the natural substrate maltose (BE = -322.85 kcal/mol), have comparable binding affinity. The top hit, a phenyl-
cyclohexenyl carbamimidic acid, was then subjected to in silico structure optimization by De Novo Evolution method and yielded five 
variants with better binding affinities. The study also indicates that the GlgE structures from Streptomyces coelicolor can be used as 
templates for designing the GlgE inhibitors of Mycobacterium tuberculosis.

Tuberculosis, commonly abbreviated as TB, has been a peren-
nial global health problem. It impairs the health of approximately 
10 million people each year and is one of the ten leading causes of 
death worldwide. In the past five years, it has overtaken HIV/AIDS 
as the number one cause of death by a single infectious agent [1]. 
In 2017, 6.4 million new cases of TB with 1.3 million deaths were 
reported to WHO. The United Nations (UN) meeting in September 
2018, a first high-level meeting on TB, underscores the need for 
immediate response towards the global goal of eradicating the TB 
epidemic by 2030. 

TB is an infectious disease caused by Mycobacterium tubercu-
losis which affects primarily the lungs and also other extrapulmo-
nary sites. It is easily transmitted through airborne droplets that 
proceed to infect mainly the tracheal pathways. A number of drug 
treatments (i.e. Isoniazid, Rifampicin, Ethambutol, etc.) are al-
ready available but the emergence of resistance to available drugs 
has made tuberculosis a continuous health threat worldwide [2]. 

Multi-drug resistant TB (MDR-TB), defined as TB resistant to the 
two most potent first-line anti-TB drugs (i.e. Rifampicin and Isonia-
zid), and extremely drug-resistant TB (XDR-TB), defined as MDR-TB 
resistant to any fluoroquinolone and at least one second-line inject-
able drug such as capreomycin, kanamycin, or amikacin [3,4], are 
not only prevalent in highly populated countries [5,6] but also pose 
additional challenges for effective control of TB in many parts of 
the world [1]. As resistance to anti-TB drugs continue to rise, there 
is a growing need to develop new classes of antitubercular agents. 

A genetically validated target in Mtb is maltosyltransferase GlgE, 
an important enzyme in the α-glucan pathway of M. tuberculosis. 
α-glucan in mycobacteria is exclusively synthesized intracellu-
larly using α-maltose-1-phosphate as the substrate for the malto-
syltransferase GlgE [7]. The inhibition of GlgE does not only lead 
to failure of biosynthesis of α-glucan, the main constituent of the 
mycobacterial capsule that is thought to be involved in immune 
evasion and virulence, but also the toxic accumulation of maltose-
1-phosphate, that eventually leads to cell death [8]. 
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In our previous work, we used the structure of GlgE enzyme in 
Streptomyces coelicolor (Sco), a homologue of M. tuberculosis GlgE 
as the drug target in virtually screening several databases of natu-
ral products [9]. These two enzymes having the same catalytic and 
very similar kinetic properties were found to have conserved do-
nor pocket capable of binding maltose [10]. However, some inhibi-
tors of the S. coelicolor GlgE like cyclodextrin does not inhibit the M. 
tuberculosis GlgE because a hydrophobic patch near the maltose-
binding site is not completely conserved in Mtb GlgE. We previ-
ously employed pharmacophore-based screening and molecular 
docking to search for new potential leads against Mtb GlgE, based 
on the structure of Sco GlgE [9]. 

Ligand preparation

Computational methods have been proven useful in the discov-
ery and development of new drugs [11,12]. As an essential step in 
computer-aided drug discovery specially in the absence of crystal 
data, homology modeling has been very successful in predicting 
protein structures using sequence similarities particularly with the 
use of multiple templates [13]. In particular, compound R207910, 
now known as Bedaquiline and the first anti-TB drug introduced 
in 60 years, was discovered by molecular docking of series of dia-
rylquinolines on the homology model of the binding site of Myco-
bacterium tuberculosis ATPase [14]. We have also applied these 
computational approaches in discovering leads against other drug-
gable targets in Mtb [9,15-21].

In this study, homology modeling was employed to generate 
a 3-dimensional structure model for the M. tuberculosis GlgE en-
zyme. A pharmacophore was subsequently generated based on the 
features of the binding site. The compounds from Ambinter (www.
ambinter.com) and Analyticon (https://ac-discovery.com/screen-
ing-libraries/) databases were screened against the Mtb GlgE tar-
get with the use of the generated pharmacophore. The top hits 
were subjected to molecular docking studies and the top-binding 
ligand were further elaborated in silico using De Novo Evolution 
technique. 

Materials and Methods

Isomers, tautomers, different ionization states and 3D confor-
mations of the molecules were generated using the Prepare Li-
gands protocol. This protocol generated several variants of each 
ligand. All structures were saved and stored in 3D databases using 
the Build 3D Database protocol.

Pharmacophore generation and virtual screening

Molecular docking

The top hits, along with our previously reported hits [9], were 
docked using the CDOCKER docking protocol. The binding energies 
of the top docking poses were calculated using the Calculate Bind-
ing Energy protocol. Finally, the ligand interaction diagrams were 
generated for each enzyme-ligand complex. 

To further explore the inhibitory potential of the top hits, in sili-
co structure optimization was performed using the De Novo Evolu-
tion protocol in DS, which contains orgnaicx.str or fragment_link.
inp libraries.

All computational procedures were done on Accelrys Discovery 
Studio (DS) Client v2.5.0.9164 installed on a computer running on 
Microsoft® Windows 7 Home Premium 64-bit Operating System 
using a processor of Intel® Core™ i3 CPU @ 2.27 GHz and installed 
memory (RAM) of 4.00 GB.

The amino acid sequence of the M. tuberculosis GlgE enzyme 
was retrieved from www.uniprot.org. The sequence was then in-

Homology Modelling of M. tuberculosis GlgE Enzyme

putted in RCSB Protein Databank to search for GlgE crystal data. 
All PDB structures yielding E value of 0 was retrieved. A subunit 
was copied from each PDB structure and pooled with the rest. The 
subunits were aligned using Align Structures (MODELER) protocol. 
The sequence of the M. tuberculosis GlgE was aligned with that of 
the templates. The aligned sequences were then used as template 
for the homology modeling. The model with the best PDF score was 
used in the subsequent procedure.

The active site of the protein was modeled using a site sphere 
based on experimentally identified amino acid residues in the bind-
ing site. That is, the amino acid residues reported to participate in 
binding of substrate to the protein was listed and selected. The site 
sphere was generated using the Define Sphere from Selection pro-
tocol. A pharmacophore based on the active site was created using 
the Interaction Generation protocol. The resulting pharmacophore 
was used to screen the molecules in the constructed database of 
3D structures. Virtual screening process was done using the Screen 
Library protocol and was divided into two parts using two different 
fitting methods. The first process involved rigid fitting of the mol-
ecules onto the pharmacophore, while the second process involved 
flexible fitting. A fit-value cut-off of 2.6 was set for rigid fitting. All 
molecules that had a fit value greater than or equal to 2.6 was re-
prepared for flexible fitting. The molecule with high fit values in the 
flexible fitting run were forwarded for molecular docking studies.

De Novo evolution
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Our previous work on virtual screening against the GlgE drug 
target was based on the structure of the enzyme in S. coelicolor 
[9] because Mtb GlgE was not yet available at that time. The re-
cent isolation of M tuberculosis GlgE allows us to perform virtual 
screening studies using the GlgE enzyme from the target pathogen 
itself. Thus, in this study we generated a homology model of the M. 
tuberculosis GlgE enzyme using the sequence of the GlgE from Mtb 
(strain ATCC 25618/H37Rv) [8] that was made available in Uni-
ProtKB (https://www.uniprot.org/uniprot/P9WQ17).

The sequence was used as a query to perform a blast search in 
RCSB Protein databank [22] for protein structures with similar se-
quence, the E value being the primary criterion of sequence simi-
larity. An E value of 0 means there is exact match between the que-

The results of the sequence alignment of the M. tuberculosis 
GlgE enzyme with that of the templates is shown in Figure 1. The 
amino acid residues were highlighted at every position according 
to consensus with the other sequences. The color ranges from blue 
to white in order of decreasing similarity. Although the GlgE in M. 
tuberculosis and S. coelicolor shared a number of conserved resi-
dues, they differ in lengths, with Mtb GlgE being longer.

Results and Discussion ry sequence and the retrieved sequence from the database. Thus, 
only hits with 0 E value were retrieved and were used as reference 
structures for the homology modeling. Accordingly, eight struc-
tures were retrieved with PDB codes of: 3ZSS, 3ZST, 3ZT7, 3ZT6, 
3ZT5, 4CN6, 4CN4, 4CN1. These were GlgE structures of S. coeli-
color [10]. This shows that S. coelicolor and M. tuberculosis indeed 
have very related GlgE enzymes. Subsequently, homology modeling 
was done vide supra. 

Figure 1: Alignment of the M. tuberculosis GlgE protein sequence with the templates.
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Figure 2: A) Solid ribbon diagram of the structure of S. coelicolor GlgE isoform used in [9], (PDB code = 3ZT5).  
B) Generated solid ribbon diagram of the 3D structure of the M. tuberculosis GIgE enzyme through Homology Modelling.  

C) Overlay of the two structures using Carbon stick diagram.

Figure 2A shows the structure of Sco GlgE that we used in our 
previous work while Figure 2B depicts the outcome of the homol-
ogy modeling of Mtb GlgE. Figure 2C shows the comparison of the 
generated homology model to the homologue (PDB code = 3ZT5) 
we used previously [9], a crystal structure of the S. coelicolor GlgE 
enzyme. Careful inspection of Figure 2C will show that some part of 
the generated model (yellow) has no overlap with that of the 3ZT5 
(red). As pointed above, the M. tuberculosis GlgE has a longer amino 
acid sequence and some of its amino acids have no counterpart in 
the S. coelicolor homologue. These parts of non-overlap represent 
the gaps in the alignment shown in Figure 1. 

Amino acids found in the binding site of the S. coelicolor GlgE 
was identified using the Show Ligand Binding Site Atoms menu op-
tion. This information was used to define the binding sphere of the 
M. tuberculosis GlgE model. The overlay image shows that the rel-
evant residues are located in the same spot in both models, validat-
ing the coordinates that we used to define the binding site in Mtb 
GlgE. The resulting binding sphere, shown in Figure 3, was used 
to generate a structure-based pharmacophore of the active site. 
The pharmacophore contained features that represent acceptors, 
donors, and hydrophobes. It was then used to screen databases of 
natural products. 

Figure 3: Binding sphere (red) in Mtb GlgE that directs the docking of the substrate maltose

The databases built from the 74,673 molecules from Ambinter 
and Analyticon databases were used as input for the screening 
processes. Virtual screening by rigid fitting searches for molecules 
with favorable interactions with the acceptors, donors, and hydro-

phobes in the binding site as represented by the complementary 
features in the generated pharmacophore model. A higher fit value 
means better fit. An arbitrary cut-off value of 2.6 was set to trim 
down the hits to manageable number. All molecules that passed 
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The binding sphere (Figure 3) was used to direct the docking 
of the natural substrate of the enzyme, maltose, as well as the two 
top hits from virtual screening (Figure 4). The two-dimensional 
(2D) Ligand Interaction Diagrams (Figure 5 and 6) were generated 

were re-prepared and re-screened using flexible fitting. Flexible fit-
ting method performs the same algorithm as rigid fitting but treats 
the molecule as a flexible structure. The top scoring hit from each 
database was docked to the Mtb GlgE model.  

to examine the binding of ligand to the protein. The Binding Ener-
gies (BE) were calculated to determine the ligands that form more 
favorable interactions with the receptor. A more negative binding 
energy denotes stronger or more favorable binding. Maltose bind-
ing energy was calculated to be -322.85 kcal/mol. Among the top 
hits, only F_2.726 (N'-(4-acetylphenyl)-N-((1R,5R,6R)-3-(((R)-
1-amino-1-oxopropan-2-yl)carbamoyl)-5,6-dihydroxycyclohex-
2-en-1-yl)carbamimidic acid) from Analyticon, with BE of -322.83 
kcal/mol) has comparable binding energy with maltose. 

Figure 4: Virtual screening top hit from A) AnalytiCon and B) Ambinter Natural Products databases.

Figure 5: Maltose docked to the defined active site of the M. tuberculosis GlgE model.

81

Virtual Screening of Compounds Against Mycobacterium tuberculosis Maltosyltransferase GlgE

Citation: Junie B Billones. “Virtual Screening of Compounds Against Mycobacterium tuberculosis Maltosyltransferase GlgE”. Acta Scientific Pharmaceutical 
Sciences 3.6 (2019): 77-85.



Figure 6: F_2.726 docked to the defined active site of the M. tuberculosis GlgE model.

De Novo Evolution technique was implemented to generate 
derivatives of the F_2.726. De Novo Evolution protocol attaches 
chemical fragments, from a predefined fragment library, onto a li-
gand scaffold to generate more favorable interaction with the re-
ceptor. The process generated structures with even better binding 
energies than F_2.726 as detailed in Table 1. Ligand 1 features a 
1-methyl-3-(3-((methylamino)methyl)phenyl) guanidine moiety 

at the amido end of parent F_2.726. Ligand 2 is a slight modification 
of Ligand 1 in having a 1,1'-(1,3-phenylene) bis(N-methylmethana-
mine) group on the same amide terminal. Ligand 3 has much sim-
pler pendant, an N-methyl-1-phenylmethanamine, although an ad-
ditional hydroxyl group was added to the cyclohexene core. Ligand 
4 is quite different with a pyrroleaminopropanol terminal on the 
amido functionality. 

ID Structure Binding Energy 
(kcal/mol) Fragment Library

Ligand 1

N

O
O

O

O

O

N +

N

O

N

N

N

N N

-374.342 fragment_link.inp
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Ligand 2

N

O
O

O

O

O

N +

N

O

N

N N

-368.867 fragment_link.inp

Ligand 3

N

O
N

NO

O

O

O

N

O

N +

O

-363.448 fragment_link.inp

Ligand 4

N

O
O

O

O

O

N +

N

O

N

N

N

N

O

-360.493 fragment_link.inp

Ligand 5

N O

O

O

O

O

N +

N

O

N

-336.609 orgx

F_2.726

N O

O

O

O

O

N

N

O

N

-322.825 Unmodified

Table 1: Structure and binding energies of the F_2.726-derived derivatives, which were generated by  
De Novo Evolution method.
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Lastly, Ligand 5 has the slightest modification, as it only in-
volves the addition of a vinyl substituent on the acetophenone end 
of F_2.726.

The top hits from our previous study [9] were also docked to 
see any difference between screening using a homology model of a 
complete and correct sequence as target, and a crystal structure of a 
homologue, as was done before. Interestingly, of the four structures 
[9] only the unmodified structure, ZINC39010596 (5,7-dihydroxy-
2-propan-2-yl-8-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxy-
methyl)tetrahydro-2H- pyran-2-yl]oxychromen-4-one), gener-
ated poses with the use of CDOCKER protocol in DS. Maltose was 
consistent in returning a more negative binding energy relative to 
ZINC39010596, whose binding energy is roughly a 100 kcal/mol 
positive than that of maltose in both cases. This means that this 
present work involving a homology model of Mtb GlgE predicts the 
same relative potency of ZINC39010596 vis-à-vis the natural sub-
strate of GlgE. This also supports the use of S. coelicolor GlgE ho-
mologue [9] as basis for designing M. tuberculosis GlgE inhibitors.

Conclusion

A homology model of the M. tuberculosis GlgE enzyme based 
on the template structures with PDB codes of 3ZSS, 3ZST, 3ZT7, 
3ZT6, 3ZT5, 4CN6, 4CN4, 4CN1, was generated. A pharmacophore 
was generated based on the protein's binding site. Virtual screen-
ing was done to search for potential inhibitors of GlgE, which is a 
highly druggable target in Mtb. The high scoring hits were docked 
to the homology model of Mtb GlgE. Only the molecule F_2.726 
from Analyticon exhibited a binding affinity that is closer to that 
of the substrate maltose. In silico derivatization of this ligand by 
De Novo Evolution technique yielded five more ligands that have 
potentially superior binding abilities with Mtb GlgE target. It is also 
noteworthy, that the substrate-enzyme complex is consistently a 
100-kcal/mol more stable than that with a top hit (ZINC39010596) 
justifying the use of a S. coelicolor GlgE homologue in designing M. 
tuberculosis GlgE inhibitors. 
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