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Abstract

The aim of tissue engineering is to produce tissues/organs which looks like their natural counterparts with the help of good scaf-
folding architecture. The scaffold is a 3D artificial substrate for cells that serves as a template on which new tissue is regenerated. 
Nanofibrous scaffolds mimic the structural features of the extracellular matrix which provide cues to a regenerate tissue with the 
use of collagen fiber. The collagen fiber structure which is noted for cell attachment, migration, proliferation and differentiation in 
tissue culture serves well in estimating the band intensity of nanofibrous scaffolding architecture. In this paper, we have presented 
a machine learning approach through the use of support vector regression analysis in estimating the band intensity of nanofibrous 
scaffolding. The SVR was built, trained and validated using some experimental values of band intensity from the literature and the 
accuracy of 76.63% and 99.51% were obtained during the training and testing phase respectively.
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Introduction

Collagen is the main ECM component, type I collagen is widely 
used in the fabrication of biomaterials, particularly for soft tissue 
repair [5]. Collagen is relatively bioinert [6] due to its well-con-
served primary sequence and helical structure, The use of col-
lagen as an ECM material is yet to be fully explored to overcome 
the difficulties in handling the problem of pathogen transmission, 
and less control over the biodegradability, mechanical properties, 
and batch-to-batch constancy of natural materials from biological 
sources [7]. 

Langer and Vacanti [1], the pioneers of Tissue Engineering (TE), 
defines it as a cross-disciplinary field that employs life sciences 
and engineering principles toward the development of biological 
replacements that maintain, restore, or improve biological tissue 
function or a whole organ. TE is a promising method of resolving 
transplantation challenges which include xenograft rejection and 
shortage of donor tissues (organs) [1-3]. 

In the field of TE, extracellular matrix (ECM) scaffold has an im-
portant role in aiding cell adhesion, migration, proliferation, differ-
entiation, neo tissue generation, and three-dimensional (3D) orga-
nization. This scaffold is a 3D artificial substrate for cells, it serves 
as a template on which new tissue is regenerated, it should be bio-
degradable (decompose at a controlled manner without leaving 
anything foreign in the body) and should finally be replaced by the 
cell-produced by ECM. 

Collagen; the main constituent of mammalian connective tis-
sues, is found in every major tissue that needs flexibility and 
strength such as skin and bone. Collagen proteins are character-

ized by a unique triple-helix formation which extends over a large 
portion of the molecules. So far, about 25 different collagen alpha 
chains had been described, where each were encoded with a sepa-
rate gene [4] and the most common is type I. The characteristics of 
type I collagen molecule contains a long, stiff, and triple-stranded 
helical structure, where three of the collagen polypeptide chains 
are inter-wound on one another in a ropelike superhelix surface. 
After the secretion of collagen into extracellular space, these mol-
ecules then assemble into higher-order polymers know as collagen 
fibrils, and the fibrils are then amassed into collagen fibers pos-
sessing 50 to 500 nm diameter range. 
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Support vector machine (SVM) is a machine learning techniques 
based on a statistical theory with some good beneficial features. 
SVM is good enough to model nonlinear relationships between 
variables using different types of kernels and they produce glob-
ally optimum results by solving a convex optimization problem 
[10]. The application of SVM cut across major areas like classifica-
tion [11] and regression problems [12]. Support vector regression 
(SVR), a subfield of machine learning, is a computational method 
that tackles most real-life problems using artificial intelligence 
principles. Its great predictive ability is employed in tackling vari-
ous problems in the medical field [28], material science [13-17], 
oil and gas industries [15,16] and response prediction in litera-
ture. This study aims to acquire a pattern that exists between the 
proteins band intensity of nanofibrous PLLA scaffolds and adopts 
the acquired pattern for future estimation of the unknown protein 
adsorption and cells attachment. The good predictive and gener-
alization ability of SVR to solve numerous problems and in addi-
tion to having an accurate, direct, and effective way of predicting 
protein adsorption that contributes to cell attachment with the use 
of nanofibrous poly (l-lactic acid) (PLLA) scaffolding architecture 
serves as motivation for carrying out this research work.

The problem of optimization in equation (3) is solved in 
dual space representation. However, Lagrangian multipliers                              
are invoked to transform the problem into a well simplified dual 
space representation. Therefore, the Lagrangian from equation (3) 
is presented in equation (4) below

Proposed MethodOne of the essential goals of TE is to produce tissues/organs 
which looks like their natural counterparts. One best technique to-
wards “ideal” scaffold fabrication is the biomimetic methodology. 
Collagen fiber structure has long been noted for cell attachment, 
migration, proliferation, and differentiation in tissue culture [8]. 
Cell attachment, growth, and migration, on the polymer surfaces, 
are believed to be assisted by proteins, either secreted by the cells 
or adsorbed from serum proteins. Woo., et al. 2003 [9] were the 
first to report that nanofibrous architecture built on 3-D scaffolds 
to improve the characteristics of protein adsorption, promoting 
cell interactions with scaffolds. From their work, it is known that 
scaffolds possessing nanofibrous pore walls adsorbed serum pro-
teins four times more when compared to solid pore walls scaffolds. 
In addition, the nanofibrous architecture selectively mediated pro-
tein adsorption such as vitronectin and fibronectin, even though 
both scaffolds were fabricated from the same PLLA material. Ac-
cording to the result of their study, nanofibrous band intensity 
scaffolds showed 1.7 times osteoblastic cell attachment as com-
pared to solid pore walls scaffolds. Their results also demonstrated 
that the biomimetic nanofibrous with estimated band intensity ar-
chitecture serves as superior scaffolding materials for TE [9].

This research work uses SVR derived from the learning theory 
of support vector machine which was proposed by Vapnik for the 
sole aim of classification [21]. The SVR uses this theory to devel-
op a machine learning model through which the band intensity of 
nanofibrous scaffold was estimated. The ϵ-insensitive loss function 
employed in SVR does not only controls the flatness of generated 
pattern but also maximize the tolerable deviations of the targets 
from the estimated values for all training dataset under the con-
sideration with the number of samples. Equation (1) represents a 
linear function in which ‹w, x› denotes the dot product in the space 
of R'.

f(x,a) = ‹w, x› + b          (1)

where w ∈ R' and b ∈ R.

To ensure from equation (1) that the goal of flatness in SVR is 
reached, a small value of w is desired through the minimization of 
the Euclidean norm || w||2 which makes the optimization problem of 
the regression looks like the one described in equation (2)

minimize 
1
2  || w||2 subject to { }yi - ‹w, xi› - b ≤ ε

‹w, xi› + b - yi ≤ ε
(2)

Existence of a function that is capable of providing error which 
is less than ε for all training pairs of the dataset is the condition 
under which equation (2) holds. The slack variables (     and       ) are 
introduced in order to create room for another kind of error that 
may arise while dealing with real-life problems. Therefore, equa-
tion (3) is modified and presented in equation (4)
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The variables in kernel function control the structures of most 
high dimensional feature space that measures the complexity of 
the final solution. Equations (11-14) describes most kernel func-
tions obtainable in literature [17]. These kernels are Polynomial, 
Linear, Gaussian, and Sigmoid functions respectively which are de-
scribed by Equation (11-14).

Where                         represent kernel parameters.The Lagrangian function with saddle point defined in equation 
(4) is easily located by equating the partial derivatives of the La-
grangian (with respect to w,b,      and      ) to zero. These mathemati-
cal transformations give rise to the expression presented in equa-
tion (5), (6), and (7).

For a developed SVRM, the training period of the model entails 
learning and acquiring patterns that need to be generalized for fu-
ture estimation of an unknown target. The generalization of each 
of the acquired pattern during the training period of the model is 
achieved by the model in the course of computing each generated 
target with the actual value so as to ensure the generalized pattern. 
The accuracy, the fitness of the generalized pattern and efficiency 
can be validated through testing the unknown values of the target 
values in which the trained model employs the acquired pattern 
during the training period to evaluate the unknown target using 
input descriptors. 

The optimization equation is maximized by simply substituting 
equations (5-7) into (4) to give equation (8)

The solutions (          ) obtained from equation (8) were also sub-
stituted into equation (1) and presented in equation (9)

The idea of Kernels function is useful in SVR algorithm for solv-
ing non-linear problems in which data is mapped into a higher 
dimensional feature space. The regression function in this feature 
space can be written as shown in equation (10) which includes the 
kernel function  

Working Principle of SVR

The SVR adopts the principles of artificial intelligence as applied 
to SVM in its operation. It aims to learn a generalized pattern from 
the descriptors and target which helps in predicting an unknown 
target. The measures of the approximate size of protein in kDa are 
the property of protein adopted as a descriptor for developing the 
SVR model through which the band intensity of nanofibrous can be 
estimated.

The algorithm of SVR is made up of variables which are to be 
varied and tuned by the user until the desired performance is 
achieved from the model. The regularization factor is one of the 
variables that control a trade-off between the amount to which de-
viations larger than E is allowed and the flatness of the acquired 
pattern [20]. It can also be referred to as a penalty factor that has 
a wide limit of variation and controls the model’s fitness. The Epsi-
lon, kernel option and hyper-parameter are among the variables of 
SVR that affect the performance of the model. The maximum tolera-
ble deviations of the all estimated values from the target values are 
well represented by the epsilon. Hyper-parameter minimizes the 
error of the model by selecting a good hyper-plane while the struc-
ture of a high dimensional feature space that controls the complex-
ity of the developed model is determined by kernel options. 

Performance evaluation of the developed model

The generalized performance of the developed model was eval-
uated using correlation coefficient (CC), root means square error 
(RMSE) and absolute error (Ea). These parameters were respec-
tively obtained through equation (15), (16), and (17).
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The efficiency, accuracy and the fitness of SVR depend greatly on 
the adopted strategies used in searching for optimum performance 
of the model. The developed SVRM performs optimally at certain 
values of regularization factor, hyper-parameter, kernel option and 
epsilon for a particular kernel function. We optimized each of these 
parameters using the test-set cross-validation technique where the 
effect one of the parameters on the performance of the model is 
determined while others are kept at constant values. The values of 
SVR parameters through which the developed model achieves its 
optimum performance are presented in Table 3 and Figure 1 shows 
the convergence of the GSA for model optimization.

Where                 and n represent error (the difference between the 
experimental and estimated data), experimental and the number 
of data point respectively.

Description of the dataset

The development of the SVRM through which the band intensi-
ty of nanofibrous was estimated employs fifteen experimental val-
ues of the band intensity of nanofibrous given the corresponding 
approximate size of the protein. The descriptors and target were 
drawn from the literature [9] and presented in Table 1. Statistical 
analysis was carried out on the dataset and the results are showed 
in Table 2. The correlation coefficients presented in Table 2 shows 
a negative correlation which shows that relationship between the 
chosen descriptors and the target is best learned by support vector 
regression. 

Empirical study

Approximate Size of  
Proteins (kDa)

Band Intensity  
(nanoporous)

180

150

120

105

90

81

75

70

68

60

55

45

40

26

25

0.107

0.118

0.146

0.053

0.086

0.196

0.104

0.983

0.259

0.25

0.257

0.111

0.073

0.123

0.285

Table 1: Dataset used for modeling SVRM.

Computational methodology

This research work utilizes MATLAB computing environment 
for training and testing the SVR through which band intensity of 
nanofibrous was estimated. The MATLAB environment was also 
made used while validating the developed model for determining 
band intensity. The dataset for developing SVRM was normalized 
and reshuffled purposely to enhance efficient computations. The 
normalized dataset was further split into training and testing phase 
in the ratio of 8 to 2 (which means 80% of the fifteen data-point 
were used to train the SVR while the remaining 20% was used to 
test the model). The developed SVRM (well trained and tested us-
ing SVR) was used.

Strategy adopted in searching for optimum parameters

Approximate Size 
of Proteins (kDa)

Band Intensity 
(nanoporous)

Mean 0.21 79.33
Median 0.12 70
Standard Deviation 0.23 44.14
Maximum 0.98 180
Minimum 0.05 25
The correlation coef-

ficient is -0.18

Table 2: Statistical Analysis.

SVR hyperparameters Optimum Value
C 0.5
Lambda e-7
Epsilon 0.0002
Kernel option 8
Kernel function Gaussian

Table 3: Optimum Parameter.
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Figure 1: The convergence of GSA for model optimization.

Results 

The development of SVRM that was employed in estimating the 
band intensity of nanofibrous involves training and testing SVR 
using fifteen values of experimental data of the band intensity. 
The correlation between the experimental and estimated band 
intensity of nanofibrous in the course of training and testing the 
model are presented in Figure 2 and Figure 3 with the correlation 
of 76.63% and 99.51% respectively as illustrated in Table 4. Table 
4 of the developed SVRM is characterized by a high coefficient of 
correlation (cc), absolute error (Ea) and low root mean square 
error (rmse). Since correlation shows the degree of similarity or 
closeness between two variables, these results mean that the band 
intensity of nanofibrous obtained from SVRM are 99.51% accurate 
and are close to the experimental values.

Figure 2: Correlation between experimental and estimated  
Nano-fibrous band intensity while training SVRM.

Figure 3: Correlation between experimental and estimated  
Nano-fibrous band intensity while testing SVRM.

Training Testing
cc 76.63 99.51
rmse 0.1902 0.0915
Ea 0.0785 0.0755

Table 4: Performance Evaluation.

Conclusion
We have established a platform for the estimation of the band 

intensity of a nanofibrous scaffolding architecture using SVRM de-
veloped through training and testing SVR with fifteen experimen-
tal values of band intensity using the test set cross validation op-
timization techniques. The SVRM approach which is precise, easy 
computing, fast and saves time is therefore recommended for the 
estimation of nanofibrous scaffolding.
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