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Cell surface major histocompatibility class I (MHC I) molecules 
provide an important tool for immune surveillance. They act as 
mirror reflecting the inner state of the cell by binding antigen 
MHC I associated peptides (MAP) of a variable 8 - 11 amino ac-
ids in length that are collectively referred to as the immunopep-
tidome [1,2]. The CD8+ Cytotoxic T Lymphocytes (CTL) receptors 
then recognize these MAP and either kill or decrease replication 
of the MAP expressing cells. This CTL surveillance for MAP has an 
important role in both eliminating virally infected and tumor cells 
but can cause autoimmune diseases and transplant rejection as 
well [3]. That is why it is important to appreciate the source and 
characteristics of MAP, as they are the key to understanding the 
immune response.
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The recognition of epitopes restricted to the major histocompatibility complex (MHC) by the cellular immune system plays an 
important role in identifying neoplastic change or infectious disease. Accordingly, it is crucial to understand the genetic bases of epi-
tope production. Herein, we review non-conventional methods of producing MHC I epitopes from translation of genetic information 
derived from non-coding regions thought to be nonfunctional. The investigation of these so-called cryptic epitopes has paved the 
way for the development of new management tools to treat challenging medical problems. Specifically, the production of immuno-
therapies for cancer and viral infections have now emerged as a realistic prospect. Given the variability of genetic information within 
cancers, targeting cryptic epitopes comes with dilemma of needing to tailor a given therapy to the individual patient. This precision 
medicine approach raises both scientific questions and logistic problems that need to be streamlined to gain satisfactory results.

Introduction

The immunopeptidome samples 2% of the cell proteome made 
up from approximately 10,000 proteins that are about 500 amino 
acids long [2,4,5]. It was originally thought that the protein source 
for the MAP was derived solely through the conventional translation 
pathway. Translation begins with the eukaryotic initiation factor 

2 (eIF-2) binding with Met-tRNAiMet and engaging the smaller 40S 
ribosome subunit to form the 43S initiation complex. The mRNA 
is then scanned from the 5’ capped end until it reaches the AUG 
start codon at an open reading frame (ORF). At that juncture, eIF-2 
detaches from the complex with the help of eIF-5 and leaves the 
Met-tRNAiMet in place bound to the AUG by its anticodon. The larger 
60S ribosome subunit then binds to the 40S-Met-tRNAiMet complex 
to form the 80S ribosome that translates the mRNA with the help 
of other elongation factors [6-8]. Eventually, the ribosome reaches 
a stop codon and detaches from the mRNA with the help of release 
factors to leave the formed protein [2,9].

To form a MAP, the intracellular protein has first to be enzymati-
cally digested by the proteasomes in the cytoplasm forming MAP 
precursor [10] that is transported to the endoplasmic reticulum 
by the transporter associated with antigen (TAP) complex [11]. 
Following trimming of the N-terminal with amino-peptidase to 
reach the optimal amino acid length [12], tapasin loads the peptide 
onto the MHC I forming peptide MHC I complex (pMHC I) to be ex-
pressed on the cell surface [13]. This process may be inhibited by 
several herpesviruses [14].
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The idea that the conventional translation pathway was the 
only source for producing MAPs was questioned thirty years ago 
when cryptic peptides were characterized and found to be pro-
duced by non-conventional synthesis. In 1989, Boon et al cloned 
and expressed P91A into a mouse tumor cell line that carried a 
point mutation in exon 4a of the mice gene P91 [15] that rendered 
the cell susceptible to CTL killing. Surprisingly, the same response 
was observed with transfection of exon 4 and surrounding introns 
without an expression vector. They then proposed the pepton hy-
pothesis that short subgenic regions can form pepton-RNA that 
yield antigens that don’t require further digestion before peptide 
loading onto the MHC I [16].

Cryptic peptides - old theories and novel discoveries

In 1996, Yewdell., et al. suggested additional mechanisms for 
the unusual sources of MAP and argued that peptidomes could 
be produced as defective ribosomal products (DRiPs) by the 
premature termination of protein production, or abnormal folding 
of proteins. These abnormally biosynthesized products were then 
rapidly hydrolyzed by proteasomes forming the MAP [17]. Indeed, 
the rapid advancement of proteogenomic science has revealed 
that sub genomic regions of DNA thought to be transcriptionally 
inactive may actually lead to protein formation. We now know that 
75% of the genome can produce proteins expanding the list of the 
described cryptic peptides [18]. 

Several non-conventional mechanisms of translation have now 
been described. For example, the initiation of translation through 
internal ribosomal entry site (IRES) is central for the translation 
of non-caped mRNA containing multiple start codons [19,20]. 
For example, the HLA-A*0201 restricted melanoma antigens are 
derived from a polycistronic mRNA containing IRES on multiple 
short ORF from the meloe gene. These encode the MELOE-1 and 
MELOE-2 antigens, which trigger CTL responses to melanoma 
cells but not healthy melanocytes [21-23]. To demonstrate that 
the neoantigen presentation in the melanoma cells was IRES 
dependent, the phenotype was recapitulated by introduction of 
a DNA fragment of the region between ORF MELOE-2 and ORF 
MELOE-1 containing the IRES sequence [23].

Where to initiate?

In addition, the ribosome also has the ability to start at near-
cognate codons that differ from AUG by one nucleotide, such as ACG 
and GUG. These sites have been characterized by causing ribosomes 
to accumulate at sites of translation and then sequencing ribosome 
protected RNA; a process referred to as ribosome profiling [27]. 
These near-cognate codons can be translated to Methionine but in 
a level that is 10 - 30 fold less efficient than AUG [28]. The exact 
mechanism is still debated as initiating translation either upper 
stream, downstream, or overlapping the protein-coding regions 
[29,30]. CUG appears to be the most efficient in starting translation 
and the codon is translated into Leucine in a fashion distinct from 
the conventional initiation method [27,31,32]. Leu-tRNA can 
form initiation ribosomal complexes within the eIF2A pathway 
instead of the classic eIF2, as demonstrated by knocking down the 
eIF2A [31]. In follow up studies, Horng., et al. showed that CUG is 
not being translated as Leucine and then continuing translation 
through a leaky stop codon by a series of experiments using vectors 
with multiple stop codons that could be translated in the three 
reading frames [33]. Taken together, these studies show that non-
conventional methods of initiation seem to be an important tool for 
producing non-cryptic peptides and translation can also occur in 
non-conventional ways.

Slippery Elongation

Another non-conventional mechanism of producing MAP can 
occur during elongation, where the tRNA can slip one or two 
nucleotides to change the reading frame. As a result, the codons 
sequences change during translation to produce a hybrid protein 
from two separate frames. This mechanism is important for 
retroviruses with limited space in their genome [34] permitting 
production of more proteins from limited genetic information [2]. 
This mechanism has been demonstrated in human cells as well 
[35].

Other mechanisms have been shown to producing cryptic 
epitopes on the level of translation initiation. These include 
initiation codon scan through by ribosomal avoidance of translation 
at the first AUG to initiate at the second [24]. A similar mechanism 

has been described where the ribosome does not dissociate after 
completing translation at a stop site and reinitiates translation 
at the following AUG [25]. These mechanisms may over ride 
point mutations inducing premature termination at stop codons 
permitting the ribosome to produce proteins in a non-conventional 
reading frame [26].

Two types of frame shifting have been reported. Programmed 
ribosomal shifting (PRF) is the most common, where the ribosome 
pauses on a slippery site of seven-nucleotide to permit the tRNA 
to slip and change the reading frame. The slippery site is followed 
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Incidental frame shifting has a lower frequency of inducing 
frame shift as compared to PRF [40]. Herpes simplex virus has 
thymidine kinase gene that may escape acyclovir due to a slippery 
seven-guanine nucleotide sequence; this activity produces MAP 
that can trigger a CTL response [41,42].

Leaky brake system

Ribosomal failure at stop codons that serve to terminate 
translation can also serve as a tool for producing cryptic MAPs 
within the 3’UTR. For example, specific aminoglycosides can induce 
a ribosomal read through by binding the ribosome and preventing 
the t-RNA anticodon from recognizing the leaky termination 
codons. Accordingly, the ribosome continues translating without 
interruption. This discovery is now studied as a therapeutic 
approach for genetic diseases that prevent the formation of 
complete functional proteins, because of premature stop codons 
(PTC), such as Duchene Muscular Dystrophy. Accordingly, these 
aminoglycosides are capable of producing a complete functional 
protein PTC, to some degree [43].

As a result of stop codon read through, MAP can be generated 
through the expression of 3’UTR to produce neoantigens that may 
trigger autoimmune reactions. To show that aminoglycosides can 
induce production of cryptic MAP, Goodenough and colleagues 
cloned different constructs within the vaccinia virus genome that 
could express the SIINFEKL peptide downstream of influenza 
nucleoprotein (NP) sequence with various stop codons in between. 
After infecting mice pretreated with gentamicin, they harvested 
the mice splenocytes, and tested the CTL response against the 
SIINFEKL peptide by ELISpot. They found that the CTL from 
gentamicin treated mice produced higher amounts of IFNγ than 
untreated mice demonstrating the ability of aminoglycosides to 
produce peptides through stop codon read-through [44].

Transcriptional and post-translational mechanisms

Non-conventional mechanisms for cryptic MAPs production 
are not restricted to the translational level only and all the levels 
of protein production may result in neoantigens. For example, 
antisense transcription of the RU2 gene results in the production 
of cryptic MAP recognized by CTL in Renal Cell Carcinoma patients 
[45]. Post-translational modifications may also result in MAP. For 
example, the protein product of the tyrosinase gene in melanoma 
cells where asparagine is converted to aspartic acid post translation 
to forms a peptide that triggers a CTL response [46]. Accordingly, 
MAP may be created by different transcriptional and the post-
translation events.

Precision Medicine and the use of Cryptic peptides 

Uncovering the various sources of cryptic peptide production 
offers novel approaches to treat challenging disorders resistant to 
current therapy. In the oncology field, for example, conventional 
peptides used to boost immune responses to tumor antigens have 
limited effect due to tolerance induction within the tumor [47]. The 
use of MELOE-1 and 2 peptides expressed exclusively in melanoma 
cells elicits immune CD8+ T cell response suggesting that these 
antigens may be good candidates for an anti-tumor vaccine. More 
recently, RNAseq has been used to describe multiple cryptic 
peptides in melanoma patients with metastatic disease to vastly 
expand the list of the tumor specific antigens that can be used 
for tumor vaccines. In this example, next generation sequencing 
of the tumor transcriptome and genomic DNA provides data on 
mutations occurring within the tumor as well as the relative 
expression of the presumed neoantigen. Further bioinformatic 
processing reveals potential neoantigens that may be expressed by 
the patients HLA to provoke anti-tumor CTL. Then peptide vaccines 
can be synthesized for testing against the patients PBMC or tumor 
infiltrating lymphocytes, if available, to determine the potential 
efficacy. This precision medicine approach is costly but effective. 
However, the use of tumor generated MAP as neoantigens may also 
be limited by tolerance induction within tumors. Nevertheless, the 
use with check-point inhibitors in combination with multiple novel 
cryptic peptides is now providing long lasting anti-tumor effects 
[48,49]. An example for failure of targeting cryptic peptides due 
to tolerance is the vaccination with a vascular endothelial growth 
factor derived cryptic peptide in patients with renal cell carcinoma 
that failed to promote an active CTL response. The peptide was 
found expressed in normal tissues to a lesser degree than observed 

by a spacer of fewer than 12 nucleotides and a pseudoknot. This 
structure regulates the PRF process by blocking the action of the 
helicase protein, halting the elongation factors and therefore, 
allowing the tRNA to shift the reading frame [36,37]. A well 
characterized example of PRF has been shown with HIV where 
a +2 frame shift from a region that overlaps the gag gene of HIV-
1 produces a cryptic peptide referred to as Q9VF. This peptide 
is restricted to HLA-B7 and immunization of transgenic mice 
expressing human HLA-B*0702 triggers a CTL proinflammatory 
response with IFNγ production [38,39].
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within renal cell carcinoma tissue, but to an extent that it induced 
tolerance [50].

Investigators have turned their attention to treating viral 
disorders as well using immunotherapy against cryptic peptides. 
For example, Ho and colleagues have carried out adoptive transfer 
experiments targeting virally infected cells. After infecting CD 
8+ T cell KO mice with murine AIDS, they adoptively transferred 
CTL specific for a cryptic peptide derived from +1 ARF of the gag 
gene of LP-BM5 three days later with IL-2 to stimulate lymphocyte 
replication [51]. The infected KO mice that received adoptive 
transfer had close to undetectable viral load as compared to control 
KO mice that didn’t receive adoptive transfer [52]. While targeting 
viral cryptic peptides for infection treatment in humans haven’t 
shown reliable advancements, similar experiments are now being 
performed in transplant recipients to control Epstein Barr virus 
infection targeting conventional peptides [53,54]. However, these 
precision medicine studies are logistically challenging and require 
much fine tuning before they can be used in clinical practice. Several 
questions remain unanswered concerning their efficacy and the 
ability to measure immunologic activity, using a QuantiferonTM 
assay to measure response, for example [55].

Targeting of cryptic peptide production is also a consideration 
for future research as these neoantigens have been implicated 
in the pathogenesis of different diseases. CTL directed against 
cryptic peptide driven by IL-10 gene has been identified in the 
synovial fluid of a patient with Reiter’s syndrome [35]. A cryptic 
peptide driven from the 5’ UTR region of TMSB4Y gene on the Y 
chromosome has been found to promote chronic graft versus host 
disease in a male patient receiving hemopoietic stem cell transplant 
from his HLA identical sister [56]. Accordingly, cryptic peptides are 
implicated in different disorders mandating novel approaches for 
immunotherapy.

Conclusion
In summary, our understanding of cryptic peptides has 

improved over the last three decades to an extent that novel 
therapies using precision medicine approaches are moving into 
translational research in the clinic. However, there is still much to 
learn before they enter clinical practice.
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