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Abstract
   Around the world, 811 million people slept hungry every single night during the year 2020. Rice is a salt-sensitive crop. The food 
production rate is not keeping up pace with the rate at which the global population is rising. The projections of the growth rate esti-
mated that by 2057 the world population would reach 10 million. Providing food to the growing human population is a big challenge. 
Rice production needs to be increased by at least 40% by the year 2030. Rice production, however, faces challenge from depleting 
soil, reduced fund in the developing world, land limitation and biotic and abiotic stresses. Biotic stresses due to bacteria, fungi, vi-
ruses and insects pests may led to the losses accounting for more than 50% of the yield. Similarly, abiotic stresses due to drought, 
temperatures, UV radiation and salinity also pose several limitations to the rice production. The losses due to salinity includes the 
loss of nutrients, amino acids and proteins, and minerals and vitamins. The plants over the course of evolution have developed spe-
cific mechanisms to counter these stresses. Present work is a review of previous works to develop an understanding so as to design 
a suitable strategy to increase rice production for a sustainable future.
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Introduction

Around the world, 811 million people slept hungry every single 
night during the year 2020 Global Hunger Index (GHI) is a mea-
sure of hunger at global, regional, and national levels with an aim 
to raise awareness and understanding of the struggle against hun-
ger, a tool to compare the differences in the hunger of countries 
and call for the attention of the local government to take appro-
priate measures to eliminate the hunger. The global hunger index 
score considers undernourishment, underweight children, stunted 
growth in children, and child mortality. 

As per the Global Hunger Index, 2021, of the 135 nations, the 
GHI scores for 19 countries could not be estimated due to the un-
availability of data. Of the remaining 116 countries the pie chart 
is shown in figure 1. 42% of the 116 countries had less than 10 
GHI in 2021, while 26% had a GHI score ranging between 10 to 
20. In 2021 still, 32% of the world was living with a global hunger 
index score greater than 20. Somalia had the highest GHI rank and 
is greater than 50 for the last 20 years.

The GHI score of the year 2021 was compared with the base 
year 2000, and it showed a decrease in the GHI score of 73% of the 
countries (Figure 2). However, the GHI score of Jamaica remained 
unchanged, while, the GHI score of the countries, Yemen and the 
Bolivarian Republic of Venezuela showed an increase. The increase 
in the hunger index of the Bolivarian Republic of Venezuela in 2021 
was 52.1% as compared with that of the year 2000. The global 
hunger index of India was 38.8 in the year 2000 and is reduced to 
27.5 in the year 2021. Despite a 29% decrease in the GHI, India still 
ranks 101st among the 116 countries with sufficient data to analyze.

Addressing hunger issues
More than 50,000 edible plants are known. Among these, rice, 

maize, and wheat are the most important food crops on earth; 
when combined, contribute nearly 60% of the nutrients to the 
world population. These three crops are consumed by more than 
4000 million people as a staple food. The total land area under cul-
tivation is highest for wheat 214 million hectares followed by rice 
(154 million hectares), and maize (140 million hectares). 85% of 
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rice produced is used for human consumption, while 72% of wheat 
and 19% of maize produced is used for human consumption.

Rice, an important staple food
Rice is eaten as a staple food for over 50% of the global popula-

tion. Over 1,10,000 rice varieties are known, which differ in their 
seed size, color, aroma, and taste. Among various rice varieties, 
Oryza sativa is the dominant crop type. The rice is consumed ei-
ther as white or brown rice. Removal of brown husk from the rice, 
makes it white, which compromises its nutrient content including 
vitamin-B, protein, fat, phosphorous, and calcium along with some 
phytochemicals [73]. 

Global production of rice
A total of 509.87 million metric tons of milled rice is produced on 

164.19 million hectares of land around the globe. China is the larg-
est producer of paddy ride producing 211.86 million metric tons 
of rice in 2020, followed by India and Bangladesh [65]. India was 
the largest exporter of Rice in 2021-22 and exported 18,750,000 
metric tons of rice. 

The food production rate is not keeping up pace with the rate 
at which the global population is rising. As of date, Mother Earth 
houses 7.96 billion people and the population is growing at an 
alarming rate. It was approximately 5 million at the dawn of agri-
culture in around 8000 BC. The exponential growth of the popula-
tion led to a 2-fold increase in the world population in the 40 years 
i.e., from 1859 (3 billion) to 1999 (6 billion), and in the subsequent 
40 years, there would be another 50% growth in the population to 
9 billion by the year 2039. The projections of the growth rate esti-
mated that by 2057 the world population would reach 10 million. 
Providing food to the growing human population is a big challenge. 
Rice production needs to be increased by at least 40% by the year 
2030 [36].

Problems faced in rice production
Soil that is used for agriculture for thousands of years without 

replenishing is exhausted and depleted in nutrients leading to low 
productivity per hectare. The Indian average yield of nearly all the 
crops per hectare is the lowest in the world. In addition, the crop 
plants are exposed to several environmental challenges that pose 
several stresses including biotic and abiotic stresses. Biotic stress 
includes stress due to pests and microbes while abiotic stresses are 
posed by the environment such as drought, flood, salinity, etc.

Quality of rice
The demand for quality rice is on the rise throughout Europe, 

the United States, and Africa. Especially the demand for longer rice 
with aroma has been on the rise. Several rice varieties, including 
the longer rice with aroma, are being developed that are adapted 
to colder nights. The development of such varieties has altered his-
torically rice-producing areas [85]. Basmati rice varieties with lon-
ger grain size, better quality, and pleasant aroma present a better 
choice [12].

 Different rice varieties with specific properties, for example, 
waxy rice, organic rice, and common (wild) rice are attracting the 
attention of the consumers. Efforts to synchronize the logical ap-

Figure 1: Global Hunger Index, 2001.  
Data source: https://www.globalhungerindex.org/ranking.html

Figure 2: Reduction in Global Hunger Index from the  
year 2000 to the year 2021.  

Data source: https://www.globalhungerindex.org/ranking.html
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proaches for the development of novel attractive quality rice and 
their economic production is the need of the hour and concerted 
efforts of various national and international research agencies are 
required [58].

Reduced funding in developing rice yield
Funding is the backbone of any project. Farming is not consid-

ered a profitable profession and needs Government support, esp., 
in lower- and middle-income group countries. Crops like paddy 
are mainly dependent on the availability of water. In earlier times, 
agriculture was mainly dependent upon rain which is beyond hu-
man control. Irrigation channels helped the farmers working on 
agricultural lands far from rivers. The investments in irrigation 
along with the water management systems by Expanding Rice 
Production Project of Global Agriculture and Food Security Pro-
gram, showed a rise in rice production thereby, improved rural in-
comes and food security in Tanzania [24]. Further, the project also 
worked for water use efficiency that had led to a reduction in the 
water requirement by half.

Rice production in itself has an environmental cost. Approxi-
mately, 2.5K liters of water is needed per Kg of rice produced. 
One-third of the irrigation water is used in rice farming alone. 
In addition, paddy farming in the flooded area is a big source of 
global methane.  The environmental costs associated with paddy 
farming may impact its yield and nutritional value in the future. 
Global warming is making things worse for rice farmers esp., in the 
Southeast Asian Region. To promote sustainable production, “UN 
Environment Program in partnership with the International Rice 
Research Institute and German development agency—Gesellschaft 
für Internationale Zusammenarbeit initiated the Sustainable Rice 
Platform in the year 2011 intending to connect governments, de-
velopment partners, businesses, farmers, and non-governmental 
organizations around the world to develop and implement proven 
solutions that benefit rice producers, consumers, and the environ-
ment”. In the year 2015, the Sustainable Rice Platform finalized a 
set of indicators to monitor the progress and impact of the adop-
tion of climate-smart, sustainable practices.

Land limitations
Rapid population growth, industrialization, and segment stress 

have forced farmers to use outlying land for expanding rice pro-
duction to meet the demands of their families. Corrosive sands, 
wetlands, forestry areas, etc. have therefore been reclaimed and 
placed under development, limiting the potential for harvest out-
put. The main soil issues are alterations in soil qualities, impacts of 

soil mining, and groundwater contamination in intensive flooded 
rice farming frameworks.

Long-term soil watering and drying cause hard dishes to form 
5–15 cm below the surface. The solid dish reduces soil porosity and 
the root’s ability to get nutrients from soil because it has a bulk soil 
layer with fewer large and medium spaces. Additionally, prolonged 
waterlogging circumstances, raise soil toxic levels, preventing the 
growth of dryland plants after rice. The limitless supply of modern 
rice also stimulates the increased use of machinery in rice farming, 
particularly in developed nations, which stimulates soil structure.

Biotic stress
Rice faces a challenge from several biotic stresses such as bacte-

rial leaf blight, sheath blight, blast, brown spot, false smut, brown 
plant hopper, yellow stem borer, and gall midge, which costs heav-
ily in terms of the overall productivity and quality of the yield [69]. 
Sheath blight, false smut, and brown spot altogether account for 
nearly 10-15% of the yield loss. The losses can be devastating and 
may reach 20-40% in case of bacteria leaf blight epidemics [2] or 
may cross 50% in the case of blast epidemic [37]. 

Bacterial pathogens of Rice
The causative agent of the bacterial leaf blight is the bacteria 

Xanthomonas oryzae pv. oryzae [66]. The bacterium gains entry 
into the leaves via wounds or hydathodes. Upon gaining access to 
the internal tissues of leaves, it multiplies and migrates to xylem 
vessels. In the xylem vessels, the bacteria multiply actively to mani-
fest the disease symptoms in rice leaves. The disease is manifested 
as a change of leaf color from pale-green to grey-green. In addition, 
water-soaked streaks are also visible at or near the leaf tips. The 
lesions grow with wavy edges and eventually, the whole leaf dies. 
Infection also results in wilting and desiccation of leaves. Young 
transplanted plants may die of the disease while the leaves of the 
older ones do not survive. The disease also influences the matura-
tion of the grains.

Xanthomonas oryzae pv. oryzicola is another pathogenic bacteri-
um that causes diseases in rice. The disease caused by the bacteria 
is called rice bacterial leaf streak. Oryza indica is more susceptible 
to the disease than O. japonica. The economic loss occurred by the 
bacteria is comparatively lesser. However, epidemics of the disease 
may cost up to 10-30% loss [48].  The bacteria infect the rice leaves 
via stomata and colonize the apoplasts in the mesophyll cells. The 
symptoms of the disease include interveinal necrotic lesions [21].
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Fungal pathogens of Rice
Magnaporthe oryzae

Magnaporthe oryzae, a filamentous fungus is the causative 
agent of blast in rice. The fungus is a hemibiotroph i.e., it infects a 
living tissue and continues to live on the dead tissues as well [57]. 
The annual losses due to infection of the fungus in rice, if averted 
can feed nearly 60 million people [54]. The parasite has to undergo 
several transformations to infect the plant cell. Upon infection, it 
builds an elaborate infection structure and multiplies inside the 
host cell. Since it is a hemibiotroph, it does not cause many visible 
symptoms. However, forms a necrotrophic association with the cell 
resulting in its death.

Rhizoctonia solani Kuhn
Rhizoctonia solani Kuhn causes sheath blight in rice. R. solani is 

a necrotrophic pathogen, i.e., it derives its nutrition from dead tis-
sues. Traditionally, they are considered brutal and were believed 
to follow the “Kill and feed” strategy. However, recently the line be-
tween the hemibiotrophs and necrotrophs is fainting [57]. The dis-
ease Rice sheath blight is one of the most devastating rice diseases 
[60]. The early symptoms of the disease include the appearance 
of greenish-gray colored circular, oval or ellipsoid, water-soaked 
spots on the leaf sheaths of the rice plant. As the symptoms de-
velop, the color of lesions changes to grayish white, with browning 
of the edges. The lesions coalesce to cover the whole sheath even-
tually killing the tissue [74]. Because of the symptoms, the disease 
got various names such as “snakeskin disease”, “mosaic foot stalk”, 
and “rotten foot stalk”.

The Rice sheath blight disease was first identified in rice fields 
of Japan in the year 1910, and with time spread to other parts of 
the world [41].  Asia, Africa, and America continents are mainly 
affected by the disease. The incidence of the disease in the paddy 
fields increased a lot in the mid-2010s Applications of high dose 
of nitrogen fertilizers and large-scale planting of semi-dwarf high 
yield cultivars seems to be the reason for the increased incidence. 
The losses of the rice yield due to the disease may increase by more 
than 50% [20].

Viral pathogens of Rice
Rice yellow mottle virus - RYMV

RYMV was first reported in East Africa in 1966. Subsequently, 
the virus spread to almost all the paddy cultivating countries in the 
African region via West Africa [55]. Oryza sativa is the preferred 
host of the RYMV virus, however, it can infect several Oryza species. 

The plants infected by RYMV show many symptoms including leaf 
mottling, yellow-green streaking, decreased tillering, and stunt-
ing of plants during the vegetative stage. While poor emergence of 
panicles and panicle sterility occur at the reproductive stage. Plants 
that get infected at early stages usually cannot complete their life 
cycle [38]. The losses caused by the viral infection are extreme and 
may range from 10-100%.

Rice dwarf virus- RDV
RDV belongs to the genus Phytoreovirus (family Reoviridae) 

and it is prevalent in southern China and other Asian countries. 
It can survive and reproduce in graminaceous plants as well as in 
insects. The insect, leafhopper (Nephotettix cincticeps or Resilia 
dorsalis) acts as its vector for transmission from one plant host to 
another [71]. The disease caused by RDV manifests in the form of 
stunted growth, characteristic chlorotic flecks, and seed-lessness.

The structure of RDV is composed of an icosahedral double-
shelled spherical coat with a double-stranded RNA genome. The di-
ameter of the spherical virion particle is nearly 70 nm. The dsRNA 
genome of the RDV has twelve segments encoding 7 structural and 
5 non-structural proteins. A non-structural protein of RDV, Pns4 is 
crucial for the infection, replication, and assembly of the virus par-
ticles in the insect vector leafhopper [14]. Upon infection, the RDV 
virus alters the physiology of its insect vector to ensure increased 
transmission [77].

Rice Tungro virus disease - RTV
Tungro is a disease in South and South-East Asia causing seri-

ous damage to rice yields in Bangladesh, India, Indonesia, Malay-
sia, Philippines, and Thailand. The annual losses due to the Tungro 
disease, account for nearly $1.5 billion. Two different viruses viz., 
Rice tungro bacilliform virus (RTBV) and Rice tungro spherical 
virus (RTSV) are involved in causing the disease in rice, of these 
RTBV contributes to the severity of the disease whereas, RTSV 
plays a helper role in the vector transmission [11]. RTSV may oc-
cur as an independent disease as reported in Philippines [3]. The 
virus is spread by green leaf hopper, Nephotettix virescens [28]. The 
complete genome of the RTBV is recently published by Kannan., et 
al. [30].

Rice yellow mottle virus - RYMV
RYMV are viruses of the Sobemovirus group. RYMV is respon-

sible for the yellow mottle of rice (Oryza sativa L.).  It is prevalent 
in the Afrotropical Regions. The virus was first recorded in Kenya 
in 1966. Chaetoecnema pulla is a beetle that acts as a vector of the 
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RYMV. Besides C. pulla another vector of the virus is another spe-
cies of the same genus – Chaetocnema sp. nov. prope varicornis 
Jacoby [7]. The symptoms of the disease include yellowing of the 
leaves and stunting of plants besides reducing tillering and repro-
ductive potential of the paddy [45].

Insect pests of Rice

Rice Gall-Midge
The scientific name of the rice gall midge insect is Orseolia ory-

zae (Insecta: Diptera).  The insect is prevalent in tropical Asia and 
causes huge damage to rice productivity in Bangladesh, Burma, 
Cambodia, southern China, India, Indonesia, Laos, Sri Lanka, Thai-
land, and Vietnam [34]. The insect damages the crop by forming 
galls which are known as silver shoots or onion tubes. The insect 
pest is responsible for more than 60% of losses. The pest infes-
tation prevents the formation of panicles in the severely infested 
plants. 

Brown PlantHopper -BPH, Nilaparvata lugens
Nilaparvata lugens (Stål) (Hemiptera: Delphacidae) are one 

of the most destructive pests of rice [16]. The insect is a vascu-
lar feeder thereby, it damages the vascular bundles of leaf sheath 
while transmitting plant viruses from one plant to another. Fur-
ther, it is a migratory insect that adds to its transmission potential. 
The insect uses its style to suck the phloem sap of the plant [16].

Control of the agents causing Biotic stress
Various measures for the control of pests and pathogens are 

being used including the use of chemicals i.e., pesticides and bio-
cides, or various breeding programs. Since the use of chemicals is 
not environmentally friendly, their use must be discouraged for 
sustainable development. Extensive use of pesticides, for example, 
is a common practice for the control of various pests. However, in-
discriminate use of chemicals not only adds to the environmental 
pollution but also kills non-target organisms that are beneficial for 
the environment thereby causing double harm to the ecology [75]. 
In addition, the use of chemicals is a costly affair and also poses a 
health hazard to the farmers.

Plant host resistance is a highly efficient measure to deal with 
the biotic stress posed by different microbes and pests. Identify-
ing the resistance gene/s in the wild population and efforts to in-
trogress or deploy or pyramid in various lines through resistance 
breeding programs and molecular approaches are underway [69]. 
For example, the Broad-Spectrum Resistance2 (BSR2) gene of the 
CYP78A family, conferred resistance to R. solani in rice [42]. Like-
wise, three RYMV virulence-resistant genes are recognized in rice. 
Gene introgression and/or pyramiding and rapid deployment of 

these resistance genes into elite cultivars seem to be an alternative 
to contain the virus [49]. 

Breeding does not always yield expected results. In the case of 
Nilaparvata lugens, for example, plant breeding to develop only a 
few resistant varieties that could reach fields [23]. Thus, some al-
ternative strategy is required that can be employed to contain the 
pests. One such strategy is silicon amendment in soil. Silicon, which 
is not an essential nutrient is highly promising in the case of infes-
tation of both sucking and chewing insect pests [61]. The applica-
tion of silicon in the soil is found to impair the sucking behavior of 
Nilaparvata lugens and also limits its population by controlling its 
reproduction capacity [81].

Abiotic stress
Abiotic stress is the stress occurred in a plant system, due to 

the challenges posed by the immediate environment pushing the 
boundaries of the tolerance limit of the plant. Several abiotic fac-
tors affect the growth, biology, and productivity of Rice. These abi-
otic factors include drought, salinity, high and low temperatures, 
UV radiations, etc. 
 

Low temperature 
Rice-growing farmers living in temperate regions have to deal 

with the low temperature [78]. The chilling cold may injure the rice 
plants and the damage may vary with the stage of development, de-
gree of coldness, and duration of exposure. Chilling temperatures 
may cost the normal growth, development, and productivity of the 
plant. Plants during the initial stages of life are comparatively toler-
ant to low temperatures and withstand up to 0 to 15°C while the 
plants at the reproductive stages cannot withstand temperatures 
below 18°C. However, chilled water is detrimental to all the stages 
of the life of the rice plant and negatively influences productivity 
[79].

The low-temperature stress is manifested as delayed and lower 
percentage of germination in the early stage [18]. While a vegeta-
tive state, it is manifested as yellowing of the leaves, dwarfness, and 
decreased tillering of the rice plants. Sterility of the spikelets or 
incomplete panicle exertion and spikelet abortion are major cold-
induced damage to rice production [82].

Natural mechanisms of rice to adapt to cold stress may be ex-
ploited for protecting the plants from extreme cold. Rice plants un-
der cold stress are known to accumulate proline to stabilize protein 
synthesis to stabilize the protein content of the cells [32]. Other 
known mechanisms to cope with cold stress include enhancing 
scavenging of the reactive oxygen species to prevent or minimize 
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the damage due to oxidative stress [64]. 
A quantitative trait locus (QTL) is defined as a portion of DNA 

that is associated with a character. Several QTLs associated with 
the tolerance to cold stress have been identified. QTLs related to 
the cold-tolerance, such as Ctb1, qCTB2a, qPSST-3, qLTB3, qCTP11, 
qCtss11, and qCTS4a are found to be associated with different 
stages of rice life. Breeding programs based upon the cold toler-
ance-related QTLs are needed to isolate more cold-tolerant variet-
ies [84].

Najeeb., et al. [46] identified 578 QTLs and 38 functionally char-
acterized genes imparting tolerance to low-temperature stress. 
The combination of stage-specific QTLs and genes from biparen-
tal mapping populations and the genome-wide association seems 
promising for the development of cold-tolerant rice varieties [46]. 

Water challenges
Waterlogging, drought, salinity, toxic wastes, and contamina-

tion due to water are some important issues that need to be ad-
dressed. Since all these pose some stress on the rice and affect its 
growth and productivity. Efficient irrigation systems and sensitivi-
ty among farmers for water conservation and judicious use are two 
factors that would mitigate most of the problems related to water 
logging or shortage careless response to the functioning structure 
of the schemes and their economic circumstances are the main 
causes of this bad drainage status. 

Drought
Rice cultivation is directly proportional to the water supply. 

However, water supply is dependent on several factors and mostly 
dependent on the quantity and duration of the rainy season. In the 
case of less water availability, paddy crops have to cope with the 
drought-like situation and experience stress. Drought stress is one 
of the important abiotic stresses that has shaped the evolution of 
plants. It accounts for a lot of loss in terms of productivity in the 
rainfed ecosystem [51].

Drought affects nearly 35% of the total cultivated land globally. 
Of the total area, one-third belongs to the developing world and 
one-fourth to the developing nations [62]. Breeding rice varieties 
with tolerance to drought stress offers an economically viable and 
sustainable option to improve rice productivity [51].

Efforts to develop drought-resistance varieties by breeding pro-
grams could not produce many drought-resistance varieties due to 
less availability of drought-tolerant varieties of rice in nature and 
a lack of suitable screening methods [51]. A thorough screening of 

nearly 1000s of germplasms from all across the globe could yield 
only a few drought-tolerant varieties [68]. International Rice Re-
search Institute was house to the screening of thousands of genes 
deposited in the gene bank for drought tolerance and identified 65 
drought-tolerant genes [10]. The importance of molecular genetics 
and breeding approaches for the development of drought tolerance 
in rice has been reviewed by Panda., et al. [50].

Salinity
Salinity affects 5-7% of the total global area [56]. Further, the 

total arable area is constantly increasing due to various factors to 
which human activities are chief contributors. According to an es-
timate, we shall lose half of the total cultivable land to salinity by 
2050 [27].

Increases in soil salinity stimulate osmotic stress resulting in al-
tered growth and physiology. Several physiological, and biochemi-
cal processes counting photosynthesis, respiration, nitrogen me-
tabolism, and ion homeostasis are affected negatively by salinity 
and significantly reduce the yield of crops [56]. High exogenous salt 
concentrations affect seed germination, and water deficit, causing 
ion imbalance of the cellular ions resulting in ion toxicity and os-
motic stress [35]. 

Specific effects of salt stress on plant metabolism have been re-
lated to the accumulation of toxic Na+ and Cl- ions, or to K+ and 
Ca2+ ions depletion [35]. The toxic level of Na+ and Cl- ions pro-
duced an outside osmotic potential that avoids water uptake or due 
to increased dormancy of seeds under salinity stress [43]. Amino 
acids have been reported to accumulate in higher plants under sa-
linity stress. Proline is probably the most widely distributed osmo-
lyte, and it occurs not only in plants but also in many other organ-
isms [30]. Salinity is one of the most serious factors limiting the 
productivity of crops, with adverse effects on germination, plant 
vigor, and crop yield.

Salinity stress in rice
Rice is a salt-sensitive crop. Salinity has a tremendous effect 

on its productivity. Salinity is found to have adverse effects on the 
overall growth of the plants including CO2 turnover, leaf growth, 
and net organic content [5]. 

The salinity in the soil disrupts the ionic and osmotic balance 
in the plant cells thereby causing stress conditions. Presence of 
cationic sodium in the soil counters Ca2+ ions that may lead to cal-
cium deficiency in the plants [29]. The high salt reaches the leaves 
causing senescence in the tissues thereby negatively affecting the 
photosynthetic rate of rice [67]. The initial phase of salt stress is 
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manifested as osmotic stress and stunted leaf development while 
ionic stress marks the later phase of salt stress [6]. Overall, salinity 
takes a toll on the growth, metabolism, water and nutrient uptake, 
spikelet development, and yield [83].

Salinity stress also causes a nutrient imbalance in rice plants. 
Nitrogen uptake has also been reduced in the presence of high sa-
linity. Other nutrients, the uptake of which have been reported to 
be reduced in rice include phosphorus, zinc, iron, and manganese 
[29].

The effect of salinity on rice plants can be observed in the vege-
tative phase as well as later reproduction phases. According to ad-
ditive genetic variations, rice genotypes exhibit significant differ-
ences in salinity tolerance. Research has shown that rice is much 
more tolerant during the reproductive and grain-filling stages than 
during the seedling or vegetative stages, and that low salinity lev-
els can boost rice tolerance to greater and deadly salt concentra-
tions [46].

Nutrient losses of rice due to salt stress
Rice is grown in 114 different nations worldwide and is seen as 

an important crop to address global hunger. Salinity stress is det-
rimental not only to the rice yield but also to the nutrient content 
of rice. 

Carbohydrates
Starch granules are a major constituent of carbohydrates in 

rice grains constituting. 87 percent of the total nutrients. Starch is 
the main ingredient (50 to 90 %) of the fresh mass of rice grains. 
Starch granules shape the texture, flavor, and appearance of the 
grain. Salt stress is known to affect the carbohydrates, insoluble 
as well as soluble sugars of rice cultivars that vary from genotype 
to genotype.

Salt stress in the tolerant varieties due to the presence of salt in 
soil greater than or equal to 8 dS/m is known to reduce the amy-
lose content [59]. While in the sensitive cultivars, salt concentra-
tion 2-4 dS/m is sufficient to induce the stress. The effect of the soil 
salinity on the carbohydrate level was up to 7-11% at 40 mM NaCl 
concentrations [53]. Starch content of the rice cultivar Nipponbare 
was reported to increase when no stress was applied i.e., at low 
salinity of 2- 4 dS/m [72]. 

Contrarily, salt stress is reported to be countered by an increase 
in the starch content of the plant [6,52]. The formation of starch 
from the sugars is considered a mechanism to counter salinity-
induced stress [52]. 

Salinity is reported to adversely affect the grain yield, which 
was attributed to the less availability of carbohydrates during the 
vegetative growth and spikelets development [29]. The rate of the 
translocation of the soluble sugars to the superior and inferior 
spikelets and reduction in the starch synthetase activity during 
grain development is proposed to be responsible for the lower pro-
ductivity of rice under salinity stress [1].

Amino acids and proteins
Proteins constitute 5-12% of the organic matter of the rice 

grain. The protein content is a determinant of the rice quality, taste, 
and aroma. Salinity stress is known to influence the protein content 
of rice. The brown rice crop i.e., cultivar Pokkali when grown under 
the influence of salinity in the range 6-8dS/m increased the total 
protein content. The high protein content is important for provid-
ing strength to the rice and reducing its breakage during the milling 
process [40]. The increase in protein content is a desirable trait as 
far as marketing is concerned. 

The effect of salinity on rice varies from genotype to genotype. 
A study regarding the effect of salinity on the rice protein content 
of six different rice cultivars. Salinity decreases overall protein con-
tent in three out of six varieties; however, it induces glutelin, albu-
min, and other proteins in rice [9]. Even the flour obtained from 
the rice produced under high saline conditions had a high pasting 
temperature. 

Minerals and vitamins
Salinity stress also adversely affected the macro and micro-

nutrients of rice. Accumulation of sodium and chloride ions in the 
plants influences the uptake of other charged ions. Mn, Cu and Zn 
were found to be accumulated in the salt-tolerant cultivar Pokkali, 
while nitrogen, phosphorous, potassium, and magnesium levels de-
creased in both the salt-tolerant ‘Pokkali’ and salt-sensitive KDML 
105 cultivars [63]. 

In the rice-wheat intercropping system, an increase in salinity 
nitrogen, sodium, magnesium, and chlorine content witnessed in-
creased accumulation accompanied by a decrease in the phospho-
rous, potassium, calcium, and sulfate ions [80]. At a salinity concen-
tration of 8 dS/m, a boost in the nitrogen, sodium, and iron content 
was observed ranging from more than 1.65 folds to 3.50 folds while 
a marked decline in the phosphorous sulfate and calcium content 
was reported in the rice crop.

Salinity tolerance mechanisms in Rice
In a biological system there are some inbuilt mechanisms de-

veloped during the course of evolution to counter stress posed by 
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various environment factors. Understanding the molecular mech-
anisms that underlie such resilience could lay the framework for 
rice varieties with improved salt tolerance [29]. Scientists have 
created several methods recently for creating salt-tolerant rice cul-
tivars. It has been discovered that using phytoprotectants works 
well to give rice plants a salt tolerance.

The genetic factors conferring the resistance to salinity stress 
are important not only for the survival of the rice plants but also 
for the production of rice [70]. Salt tolerance is controlled by poly-
genes [17]. Several processes are involved in conferring the toler-
ance to the rice plant [44].

Osmotic adjustment
Osmotic adjustment is the most important strategy of plants to 

counter the salinity stress. The accumulation of sodium and chlo-
ride ions due to high salinity in soil disturb the ionic balance of 
the cells. In response to the ionic imbalance the cells make their 
osmotic adjustments which were determinant of the plant sur-
vival. Osmotic adjustments are achieved by accumulation of mac-
romolecules such as, organic solutes, free sugar, glycine betaine, 
and proline in the cell cytoplasm [30]. Further, in the leaves the 
osmotic adjustments are made by dilution effects and the transpi-
ration force [4].

Stomata closure
Leaves respond to salinity in the soil by rapidly closing the 

stomata. The salt concentration in the immediate environment of 
roots led to the biosynthesis of abscisic acid, which in turn mediate 
the stomata closure [31]. The closure of stomata leads to decline in 
the photosynthetic rate in monocot plants like rice and thus car-
bon dioxide assimilation.

Particle exclusion
Particle exclusion is a phenomenon in which sodium and chlo-

ride ions are excluded from the vascular bundles back to the soil 
and thus, stopped from surplus accumulation in the leaves. Root 
cap plays an important role in the exclusion of sodium salts. Salt-
tolerant lines avoid sodium accumulation and absorb potassium 
ions [44]. The size of the root cap is bigger in the salt-tolerant 
varieties [22]. The roots of rice initially selectively uptake the so-
dium ions by symplastic and apoplastic routes [18]. The uptake of 
the salt in rice plants mainly takes the apoplastic pathway [39] to 
which casparian strips pose a barrier. The width of the casparian 
strips is important to access the effect and response of the stress 
[13].
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