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Abstract

Mathematical models of metabolism can be a useful tool for metabolic engineering. Genome-scale models (GSMs) and kinetic 
models (KMs) are the two main types of models. GSMs provide steady-state fluxes while KMs provide time-course profile of metabo-
lites, which has more advantage in identifying metabolic bottlenecks. However, KMs require greater degree of accuracy for param-
eters than GSMs resulting in fewer large-scale KMs than GSMs. Recently, large-scale KMs have been developed but are not based on 
standard enzymatic rate equations resulting in difficulty in interpreting results in terms of enzyme kinetics. Here, we construct a 
universal, non-species-specific KM of core metabolism, based on Michaelis-Menten Equation, from glucose to the 20 amino acids and 
5 nucleotides based on reactions listed in Kyoto Encyclopaedia of Genes and Genomes (KEGG). Non-species specificity is achieved 
by using the same Michaelis-Menten constant (Km), turnover number (Vmax), and concentration for each metabolite and enzyme 
for each equation. This forms a base model for developing species-specific whole cell KMs. The resulting model consists of 566 reac-
tions, 306 metabolites, and 310 enzymes, involving in 1284 metabolite productions, and 1249 metabolite usages. Sensitivity analysis 
shows that 85% of the metabolite concentration changes with the change of one enzyme kinetic parameter. This forms a base model 
for developing species-specific whole cell KMs.
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Introduction
The term “fourth industrial revolution (FIR)” is coined by Klaus 

Schwab [1] as the fusion between information and communication 
technologies and human capacities, with the potential to influence 
the world by increasing efficiency in different sectors by imple-
menting advanced technologies; such as, artificial intelligence, 
big data analytics, automation, and robotics. New innovations in 
metabolic engineering and synthetic biology has shaped the bio-
technological platform in the new generation; thus, asserting its 
place in FIR [2].

Metabolic engineering aims to optimize metabolic process by 
genetic engineering and pathway optimization for optimal produc-
tion of one or more desired products in the most sustainable order 
[3]. Identification of pathway bottlenecks by tracking individual 
substrates can be aided by mathematical modelling and simula-
tions [4,5]. Mathematical models of a metabolic pathway play an 
important role in the simulation of cellular events in silico experi-
ments under different genetic and environmental conditions. There 
are mainly two types of models – kinetic models and constraint-
based models [6]. 
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Constraint based models of metabolism, commonly known as 
genome-scale models (GSMs), are based on reaction stoichiom-
etries and reversibilities, offering every possible solutions by im-
posing constraints [5,7] while providing steady-state production 
rates of metabolites [8]. Yang., et al. [9] used a GSM of Escherichia 
coli to study the production of aromatic polyester after cloning iso-
caprenoyl-CoA:2-hydroxyisocaproate CoA-transferase from Clos-
tridium difficile and an evolved polyhydroxyalkanoate synthase. 
Kinetic models (KMs) generally require rate equations in the form 
of ordinary differential equations (ODE) that defines the rate of 
change of concentrations of the substrates involved [10], which of-
fers a transient dynamic approach as it provides specific solutions 
in time for steady-state fluxes from the initial concentration of the 
substrates [5]. Hence, KMs are considered unconstrained [6] and 
can provide time-course profile of metabolites rather than steady-
state, which is more advantageous than GSMs [5]. However, KMs 
require greater degree of accuracy for parameters than GSMs [5]; 
hence, more demanding and as a result, there are fewer large-scale 
KMs than GSMs. Khodayari., et al. [11] presented a KM of E. coli 
core metabolism, which had been used to explore succinate over-
production [12]. The original model [11] has also been expanded 
by the same group [13]. However, the model [13] is not based on 
standard enzyme rate equations; such as Michaelis-Menten equa-
tion [14] or Haldane Equation [15]. Hence, it makes interpretation 
of results difficult as the correspondence between the model pa-
rameters and enzyme kinetics is not obvious.

In this study, we construct a universal, non-species-specific 
KM of core metabolism from glucose to the 20 amino acids and 
5 nucleotides based on reactions listed in Kyoto Encyclopaedia of 
Genes and Genomes (KEGG) database [16]. Non-species specific-
ity is achieved by using the same Michaelis-Menten constant (Km), 
turnover number (Vmax), and concentration for each metabolite 
and enzyme for each equation. This forms a base model for devel-
oping species-specific whole cell KMs.

Methods
Model construction

Reference metabolic reactions linking glucose to the synthesis of 
20 amino acids and 5 nucleotides were identified from 12 reaction 
maps (map00220, map00230, map00240, map00250, map00260, 
map00270, map00300, map00330, map00360, map00350, 

map00290, and map00340) in Kyoto Encyclopaedia of Genes and 
Genomes (KEGG) database [16]. The concentration of each metabo-
lite, which are being modelled mathematically as an ODE [17], is in 
the form of where pro-
duction represents a formation or synthesis of the metabolite, and 
usage represents a usage of the metabolite to form another metab-
olite. As production and usage terms are in pairs, they can be mod-

elled as a Michaelis-Menten expression,  

where kcat is the turnover number (per second) of the enzyme, Km 

is the Michaelis-Menten constant, [enzyme] and [substrate] are the 
concentrations (in molar) of the enzyme and substrates respective-
ly and N represents the number of molecules. The concentrations 
of metabolites and enzymes were set at 1 micromolar and 100 mil-
limolar, respectively; while the kcat and Km were set at 10 per second 
and 1 millimolar, respectively. The model is written as an Advanc-
eSyn Model Specification (https://bit.ly/ADSToolkit).

Baseline simulation

Model simulation was performed using AdvanceSyn Toolkit 
(https://bit.ly/ADSToolkit). The model was simulated using the 
fourth-order Runge-Kutta method [18,19] from time zero to 21600 
seconds with timestep of one second, and the concentrations of 
metabolites were bounded between 0 millimolar and 1 millimolar. 
The simulation results were sampled every 60 seconds. 

Sensitivity analysis

Sensitivity analysis was performed using AdvanceSyn Toolkit 
(https://bit.ly/ADSToolkit) using One-Factor-at-a-Time method 
[20,21] was used to evaluate the effects of varying enzyme con-
centrations, Michaelis-Menten constant, and turnover number (as 
listed in the Variables section of the model) by comparing the base-
line simulation results with that after increasing the factor by 100 
times. The model was simulated using the fourth-order Runge-Kut-
ta method [18,19] from time zero to 21600 seconds with timestep 
of one second, and the concentrations of metabolites were bounded 
between 0 millimolar and 1 millimolar. A total of 930 variations of 
the parameters (310 variations each of concentration, Km, and kcat) 
were simulated and compared against that of baseline simulation. 
Mean squared error (MSE) and Pearson’s coefficient of determina-
tion (R-square) was calculated for each parameter variation using 
the 2 sets of metabolite concentrations at 21600 seconds. Hence, 
MSE is directly proportional to the effect of the parameter to the 
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entire metabolite network.

Results and Discussion
Model consists of 306 metabolites in 566 reactions

The resulting model consists of 566 reactions, 306 metabolites, 
and 310 enzymes, involving in 1284 metabolite productions, and 
1249 metabolite usages. This amount to 1.63% of the 18,720 me-
tabolites (accessed on July 09, 2020) found in KEGG [16]. From the 
perspective of reactions, the number of substrates is correlated 
to the number of products (R-square = 0.337, F-statistic = 286, p-
value = 2.5E-52). More than 62% of the reactions have 2 substrates 
and 2 products – 67 (11.8%), 355 (62.7%), 108 (19.1%), and 36 
(6.4%) reactions with 1, 2, 3, and 4 production terms, respectively; 
whereas 49 (8.6%), 351 (62.0%), 131 (23/1%), and 35 (6.2%) re-
actions with 1, 2, 3, and 4 usage terms, respectively. From the per-
spective of metabolites, the number of reactions producing and/

or using a metabolite is correlated (Figure 1; R-square = 0.649, F-
statistic = 563, p-value = 3.6E-71).

85% of the metabolite concentration changes with one param-
eter variation

Sensitivity analysis shows near perfect correlation (Figure 2; R-
square > 0.996, F > 91131, p-value < 1E-240) between the mean 
squares errors (MSE) and Pearson’s coefficient of determination 
(R-square). R-square measures the degree of correlation between 
the metabolic profiles of parameter variation and baseline while 
MSE measures the differences between the metabolic profiles of pa-
rameter variation and baseline. As this study involves comparison 
between the concentrations of the original reaction and the con-
centrations in the simulated reactions; difference measures, such 
as MSE, is a more reliable measure [22] than correlation measures, 
such as R-square, for model selection [23]. Hence, MSE used for 
further analysis and shows that the average concentration varia-

Figure 1: Relationship between number of reactions producing 
and/or using a metabolite.

Bins (by  
MSE)

Enzyme Parameters
Turnover 

Number (kcat)
Concen-
tration

Michaelis-Menten 
Constant (Km)

>1.0E-09 303 292 278
>1.0E-08 298 282 273
>1.0E-07 203 166 145
>1.2E-07 129 74 68

>1.4E-07 55 23 20
>1.6E-07 35 8 2
>1.8E-07 15 0 1
>2.0E-07 4 0 0

Table 1: Distributions of MSE by parameters.

Figure 2: Relationship between mean square error and pearson’s correlation.
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tion in metabolites as a result of one change in enzyme parameter; 
namely, concentration, kcat, or Km; is 305 micromolar with the me-
dian at 324 micromolar as the unit for MSE is squared-micromolar.

Our results show that MSE can be affected by the three enzyme 
parameters (Table 1). However, comparing the experimental work 
needed to affect each of the parameters; changes in concentration 
requires gene overexpression [24] which is often easier and more 
routine than changes in kcat and Km, which often requires screen 
of mutant libraries or directed evolution [25]. Hence, changes in 
enzyme concentration is generally considered before changes in 
kcat and Km. 

Further analysis suggests that 15% of the metabolites do not 
change in concentration at the end of simulation time regardless 
of changes in any enzyme parameters while 45% and 40% of the 
metabolites increases or decreases in concentration at the end of 
simulation time with the change of one enzyme parameter. From 
the number of affected metabolites, the median number of en-
zyme parameter changes that can increase or decrease metabolite 
concentration at the end of simulation time are 35 and 52.5 re-
spectively. Importantly, 5 metabolite concentrations (KEGG com-
pound IDs C00302, C01250, C05125, C06195, and C09306) can 
be decreased by only one parameter change while 15 metabolite 
concentrations (KEGG compound IDs C00019, C00188, C00212, 
C00460, C00499, C00606, C02350, C02718, C04272, C05147, 
C05381, C05519, C12248, C15972, and C19706) can be increased 
by only one parameter change. On the extreme end, the concen-
tration of O-Acetyl-L-serine (KEGG compound ID C00979) can be 
reduced by 669 parameter changes while the concentration of 
carbon dioxide (KEGG compound ID C00011) can be increased by 
673 parameter changes. The goal of metabolic engineering is to 
optimize cellular processes for the production of a metabolite of 
interest [3] and these results illustrate the potential use of KMs as 
an exploratory tool.

Conclusion
This study presents a universal, non-species-specific kinetic 

model of core metabolism, based on Michaelis-Menten Equation; 
from glucose to the 20 amino acids and 5 nucleotides; consisting 
of 566 reactions, 306 metabolites, and 310 enzymes, involving in 
1284 metabolite productions, and 1249 metabolite usages. This 
forms a base model for developing species-specific whole cell ki-
netic models.

Data Availability
The data files for this study can be downloaded at https://bit.

ly/UniKin1, which is a zip file containing the following files: (i) Re-
actions.xlsx containing information of the reactions with its asso-
ciated metabolites and enzymes, (ii) Fluxes.xlsx contains analysis 
of the productions and usages of each metabolite, (iii) UniKin1.
modelspec is the model in AdvanceSyn Model Specification, (iv) 
UniKin1.py is the executable simulation model, (v) Simulation.xlsx 
contains results of baseline simulation, and (vi) Sensitivity_Analy-
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