

Volume 3 Issue 3 March 2020

# The Realization of the Cholinergic Anti-Inflammatory Pathway Under the Influence of $\alpha$ 7nAChRs Agonist and STAT3 Inhibitor in Sepsis

# Pavel Franzevich Zabrodskii\*

Saratov Medical University "REAVIZ", Saratov, Russian Federation

\*Corresponding Author: Pavel Franzevich Zabrodskii, Saratov Medical University "REAVIZ", Saratov, Russian Federation. Received: January 17, 2020 Published: February 26, 2020 © All rights are reserved by Pavel Franzevich Zabrodskii.

#### Abstract

Experiments on random-bred albino mice showed that  $\alpha$ 7n-acetylcholine receptors ( $\alpha$ 7nAChRs) agonist (GTS-21) and STAT3 inhibitor (S3I - 201) lead to the realization of the cholinergic anti-inflammatory pathway (the reduce the mortality of mice, the blood concentrations of proinflammatory cytokines TNF- $\alpha$ , IL-1 $\beta$  and IL-6 in sepsis (intraperitoneal of 2.5×10<sup>9</sup> CFUs diurnal culture of *E. coli*). The combined action of  $\alpha$ 7nAChRs agonist and STAT3 inhibitor causes an additive effect.

Keywords: Cholinergic Anti-Inflammatory Pathway; Proinflammatory Cytokines; Sepsis; A7n-Acetylcholine Receptors; STAT3 Inhibitor

## Introduction

Sepsis is a serious public health problem. Worldwide, the incidence of sepsis ranges from 20 to 30 million cases per year, with the frequency of lethality increasing [1,2]. From all deaths associated with diseases and their complications, mortality from sepsis, depending on various factors, ranges from 12 to 60% [3,4]. For the first time in 1987, it was found that cholinergic stimulation significantly reduces the mortality of albino mice from sepsis [5], and later proved the feasibility of using cholinomimetics for emergency activation of the body's antimicrobial resistance in sepsis [6,7]. The cholinergic anti-inflammatory mechanism [5] was named after the study of its implementation on the organismic, cellular and subcellular levels in 2000 as the "cholinergic anti-inflammatory pathway" [5-9].

The cholinergic anti-inflammatory pathway [6-12], includes: acetylcholine m-acetyl cholinergic receptor type 1 (m1AChRs) activation of the brain, modulating the immunoregulatory function of the vagus nerve [9,10,13,14]; excitation of efferent fibers n. vagus; effect of acetylcholine on  $\alpha$ 7nAChRs of the macrophage-monocytic system (MMS) cells [12,14,15]. The occurrence of anti-inflammatory effect in cells of MMS is provided by JAK2 kinase (tyrosine-protein kinase JAK2); STAT3 transcription factor (STAT3 - signal transducer and activator of transcription 3); NF- $\kappa$ B transcription factor (NF- $\kappa$ B - nuclear factor kappa-light-chain-enhancer of activated B cells) [9-11,13,14]. These effects lead to a decrease in mortality from sepsis due to the reduction of the production of proinflammatory cytokines TNF- $\alpha$ , protein B1 - HMGB1, macrophage-inflammatory protein-2 - MIP-2, interleukins - IL-1 $\beta$ , IL-6 [8-11,14].

It is of great interest to study the possibility of reducing mortality in sepsis and various pathological processes by stimulating or inhibiting various elements of the cholinergic anti-inflammatory pathway [13,15-17], in particular the possibility of achieving a therapeutic effect with activation of  $\alpha$ 7nAChRs in combination with inhibition of the STAT3 transcription factor [16,18,19].

## Aim of the study

The aim of the study was to assess the combined effect of the  $\alpha$ 7n-acetylcholine receptors agonist and the NF- $\kappa$ B inhibitor on the implementation of the cholinergic anti-inflammatory pathway in

**Citation:** Pavel Franzevich Zabrodskii. "The Realization of the Cholinergic Anti-Inflammatory Pathway Under the Influence of α7nAChRs Agonist and STAT3 Inhibitor in Sepsis". *Acta Scientific Microbiology* 3.3 (2020): 01-05.

early phase of sepsis (estimation of the mortality rate of mice in sepsis caused by experimental peritonitis and the blood content of proinflammatory cytokines TNF- $\alpha$ , IL-1 $\beta$ , IL-6).

## **Materials and Methods**

The experiments were performed on random-bred albino mice of both sexes weighing 18 - 22 g. The control group of mice (control group 1, n = 8) received intraperitoneally 2.0 ml of isotonic sodium chloride solution (saline) 10 - 15 minutes after the last intraperitoneal (i. p.) was administered of 0.5 ml of 0.05% aqueous solution of dimethyl sulfoxide - DMSO (Sigma-Aldrich), which was used daily for 4 days. The second group of mice (control group 2, n = 50) was injected for 4 days with 0.5 ml of a 0.05% aqueous solution of DMSO (i.p., once daily). 2 h after administration of this solution, mice in this group received (i. p.)  $2.5 \times 10^9$  CFUs diurnal culture of *E. coli* in 2.0 ml of saline (sepsis modeling) [5-8,13,14,20,21].

The third group of mice (n = 40) was injected with  $\alpha$ 7nAChR agonist GTS-21 [3-(2,4-dimethoxybenzylidene)-anabas Eine dihydrochloride] (Sigma-Aldrich) subcutaneously, 5 mg/kg, once daily for 4 days (in 0.5 ml of a 0.05% aqueous solution of DMSO), taking into account GTS-21 half-life period of 12 - 24 h [22].

The fourth group (n = 25) was administered (i.p., once daily) for 4 days STAT3 inhibitor (S3I-201 - 2-Hydroxy-4-[[[[(4-methylphe-nyl)sulfonyl]oxy]acetyl]amino]-benzoic acid) (Sigma-Aldrich) at a dose of 5 mg/kg in 0.5 ml of a 0.05% aqueous solution of DMSO [18].

In the 5th group (n = 30) the  $\alpha$ 7nAChR agonist (GTS-21) was administered (once daily for 4 days) in combination the STAT3 inhibitor (S3I-201). The STAT3 inhibitor was administered 10 - 15 minutes after the injection of the  $\alpha$ 7nAChR agonist. In groups 3-5, after 2 h after the administration of drugs, sepsis was modeled. The mortality of mice (groups 2 - 3) was recorded after 4 and 24 h after the sepsis modeling. The concentration of TNF- $\alpha$ , IL1 $\beta$  and IL-6 were measured in the blood plasma of all groups of mice (groups 1 - 5) using by ELISA (My Bio Soure) according to manufacturer's instructions. Determination the concentrations of proinflammatory cytokines used monoclonal antibodies My Bio Source (cat. N - MBS494184, MBS494492, MBS335516 for TNF-α, IL-1β, and IL-6, respectively). Blood for research was taken from the retroorbital venous sinus. The data obtained were processed statistically using the Student's t-test. Differences between the parameters were considered reliable at p < 0.05.

# Results

The α7nAChR agonist (GTS-21) caused a decrease of the mortality of mice after 4 h after the administration of the daily culture of E. coli (sepsis modeling) compared to the control group 2 (sepsis) by 2.29 times (by 22.5% - p < 0.05), and after 24 h - by 1.45 times (by 26.0% - p < 0.05). The STAT3 inhibitor (S3I-201) reduced mortality from sepsis after 4 and 24 h after sepsis modeling compared with group 2, respectively, by 2.00 times (p < 0.05) (by 20.0%) and by 1.53 times (by 30,0%) (p < 0.05). The administration of the  $\alpha$ 7nAChR agonist in combination with the STAT3 inhibitor caused an additive effect. Thus, the mortality of mice compared with the control after 4 and 24 h after the administration of E. coli compared with the control (group 2) decreased, respectively, by 4.00 times (by 30.0%) (p < 0.05) and by 3,23 times (by 59.4%) (p < 0.05) (Table 1). It should be noted that the reduction of mice mortality from sepsis in the combined effect of the  $\alpha$ 7nAChR agonist and the STAT3 inhibitor after 24 h after sepsis modeling compared to parameters of groups 3 and 4 was significant (p < 0.05), and in 4 h - statistically insignificant (p > 0.05), despite the difference of 2.0 times. The effects of the α7nAChR agonist and the STAT3 inhibitor in estimating mouse mortality were practically the same.

| Group (series of experiments)                                      | Term study of mortality<br>after the introduction of<br><i>E. coli</i> , h |              |  |  |
|--------------------------------------------------------------------|----------------------------------------------------------------------------|--------------|--|--|
|                                                                    | 4 h                                                                        | 24 h         |  |  |
| 2nd control group (sepsis; <i>n</i> = 50)                          | 40,0 ± 6,9                                                                 | 86,0 ± 4,9   |  |  |
| 3rd (α7nAChRs agonist GTS-21;<br>n = 40)                           | 17,5 ± 6.4*                                                                | 60,0 ± 8.0*  |  |  |
| 4rd (STAT3 inhibitor - S3I-201;<br><i>n</i> = 25)                  | 20.0 ± 8.0*                                                                | 56.0 ± 9.9*  |  |  |
| 5th ( $\alpha$ 7nAChRs agonist +STAT3<br>inhibitor; <i>n</i> = 30) | 10.0 ± 5,5*                                                                | 26.6 ± 8.1** |  |  |

**Table 1:** Effect of  $\alpha$ 7nAChRs agonist (GTS-21, 5 mg/kg, once daily for 4 days) and STAT3 inhibitor (S3I-201, 5 mg/kg, once daily for 4 days) and their combined effect on the mice mortality after sepsis modeling, % (M±m).\* -p <0,05 as compared to group 2); \*\* - p <0,05 in comparison with the control (group 2) and groups 3; 4.

The concentration of cytokines TNF- $\alpha$ , IL-1 $\beta$  and IL-6 after the sepsis modeling (control group 2) in the blood of mice after 4 h compared with the control group 1 (intact animals) increased respectively to 22.4; 17.1 and 51.9 times (p < 0.05), and the content

**Citation:** Pavel Franzevich Zabrodskii. "The Realization of the Cholinergic Anti-Inflammatory Pathway Under the Influence of α7nAChRs Agonist and STAT3 Inhibitor in Sepsis". *Acta Scientific Microbiology* 3.3 (2020): 01-05.

03

of these cytokines after 24 h (after the sepsis modeling) compared to their level after 4 h decreased, respectively, to 23.0; 4.4 and 8.4 times (p < 0.05). The content of IL-1 $\beta$  and IL-6 after 24 h remained higher than in group 1 by 3.6 times (p < 0.05) and 10.3 times (p < 0.05), respectively, and the concentration of TNF- $\alpha$  in groups 1 and 2 did not differ significantly (Table 2).

| Series of experiments                               | ΦΗΟα                   |                      | ил1β              |                           | ИЛ-6                      |                          |
|-----------------------------------------------------|------------------------|----------------------|-------------------|---------------------------|---------------------------|--------------------------|
|                                                     | 4                      | 24                   | 4                 | 24                        | 4                         | 24                       |
| Control group 1                                     | 43 ± 6                 | 32 ± 6               | 36 ± 5            | 39 ± 7                    | 40 ± 7                    | 24 ± 5                   |
| Sepsis (control group 2)                            | 966 ± 105ª             | 42 ± 8°              | $615 \pm 78^{a}$  | 141 ± 25 <sup>ac</sup>    | $2077 \pm 262^{a}$        | $246 \pm 30^{ac}$        |
| α7nAChRs agonist (GTS-21) (group 3)                 | $143 \pm 17^{ab}$      | 29 ± 5 <sup>bc</sup> | $163 \pm 19^{ab}$ | $56 \pm 7^{\text{abc}}$   | $214 \pm 21^{ab}$         | $61 \pm 8^{abc}$         |
| STAT3 inhibitor (S3I-201) (group 4)                 | $160 \pm 25^{ab}$      | 36 ± 7°              | $170 \pm 26^{ab}$ | 60 ± 11 <sup>bc</sup>     | 294 ± 33 <sup>ab</sup>    | $87 \pm 11^{\text{abc}}$ |
| $\alpha$ 7nAChR agonist + STAT3 inhibitor (group 5) | 95 ± 13 <sup>abd</sup> | 27 ± 6°              | $98 \pm 16^{abd}$ | $30 \pm 6^{\mathrm{bcd}}$ | $150 \pm 19^{\text{abd}}$ | $43 \pm 7^{abce}$        |

**Table 2:** Effect of  $\alpha$ 7nAChRs agonist (GTS-21, 5 mg/kg, once daily for 4 days) and STAT3 inhibitor (S3I-201, 5 mg/kg, once daily for 4 days) and their combined effect on the concentration of proinflammatory cytokines in blood of mice after sepsis modeling, pg/ml (M ± m; n=7-8).

Note. 4 and 24 - time after modeling of sepsis, h; a -p <0.05 compared to control (group 1); b-p <0.05 compared with corresponding parameter for sepsis (control group 2); c -p <0.05 compared with parameter after 4 h; d -p <0.05 - in comparison with groups 3; 4; e -p <0.05 - in comparison with groups 4.

The  $\alpha$ 7nAChRs agonist after 4 h after sepsis modeling reduced the blood levels of TNF- $\alpha$ , IL-1 $\beta$  and IL-6 (group 3) compared to the control group 2, respectively, by 6.8; 3.8 and 9.7 times (p < 0.05). The blood content of these cytokines after 24 h, compared with their level after 4 hours decreased, respectively, by 4.9; 2.9 and 3.5 times (p < 0.05). The concentrations of IL-1 $\beta$  and IL-6 (after 24 h after sepsis modeling) statistically significantly (p < 0.05) exceeded those of the control group 1 by 1.4 and 2.5 times (p < 0.05), respectively, and compared to the parameters of group 2 the content IL-1 $\beta$  and IL-6 were reduced by 2.5 and 4.0 times, respectively (p < 0.05). The value of TNF- $\alpha$  was not significantly different from the levels in groups 1 and 2 after 24 h after the sepsis modeling.

The STAT3 inhibitor (S3I-201) 4 h after sepsis modeling reduced the blood levels of TNF- $\alpha$ , IL-1 $\beta$  and IL-6 (group 4) compared to the control group 2, respectively, by 6.0; 2.4 and 7.1 times (p < 0.05). The concentrations of TNF- $\alpha$ , IL-1 $\beta$  and IL-6 after 24 h after sepsis modeling compared with their level after 4 h decreased, respectively, by 4.0; 2.8 and 3.4 times (p < 0.05). The concentrations of IL-1 $\beta$  and IL-6 after 24 h after sepsis modeling statistically significantly (p < 0.05) exceeded those of the control group 1 by 1.5 and 3.6 times (p < 0.05), respectively, and compared to the parameters of group 2, the content IL-1 $\beta$  and IL-6 were reduced by 2.4

and 2.8 times, respectively (p < 0.05). The value of TNF- $\alpha$  was not significantly different from the levels in groups 1 - 3 after 24 h after the sepsis modeling. The blood content of TNF- $\alpha$ , IL-1 $\beta$  and IL-6 in groups 3 and 4 were statistically no different.

The concentrations of TNF- $\alpha$ , IL-1 $\beta$  and IL-6 in group 5 (combined effect of  $\alpha$ 7nAChRs agonist and STAT3 inhibitor) compared with parameters of group 3 (effect of the  $\alpha$ 7nAChRs agonist) after 4 h after sepsis modeling were lower respectively by 1.5 (p < 0.05); 1.7 (p < 0.05) and 1.4 times (p < 0.05), and after 24 h the levels of IL-1 $\beta$  and IL-6 were less than the corresponding values in the group of 3 by 1.9 (p < 0, 05) and by 1.4 times (p > 0.05). The value of TNF- $\alpha$  was not significantly different from the levels in groups 1-4 after 24 h after the sepsis modeling.

The decrease of the proinflammatory cytokines concentrations at the combined effect of  $\alpha$ 7nAChRs agonist and STAT3 inhibitor (group 5) compared with parameters of group 4 (effect of the STAT3 inhibitor) was reduced in the same way as in comparison with parameters of group 3 (effect of  $\alpha$ 7nAChRs agonist).

The data obtained suggest that the combined action at the combined effect of  $\alpha$ 7nAChRs agonist and STAT3 inhibitor causes an additive effect.

**Citation:** Pavel Franzevich Zabrodskii. "The Realization of the Cholinergic Anti-Inflammatory Pathway Under the Influence of α7nAChRs Agonist and STAT3 Inhibitor in Sepsis". *Acta Scientific Microbiology* 3.3 (2020): 01-05.

## Discussion

The data obtained and the results described in numerous articles [8-10,13] suggest that the decrease in mice mortality from sepsis under the action of the  $\alpha$ 7nAChRs agonist is due to a decrease in the concentration of proinflammatory cytokines (reduces the production of proinflammatory cytokines by macrophages and monocytes), in particular, TNF- $\alpha$ , IL-1 $\beta$  and IL-6. Activation of  $\alpha$ 7nAChRs of MMS cells with the participation of JAK2 kinase, NF- $\kappa$ B and STAT3 transcription factor [9-11,13].

The NF-κB transcription factor and STAT3 transcription factor modulates the synthesis of proinflammatory cytokines involved in development of sepsis. Signal pathways initiated by Toll-like receptors (TLR2 and TLR4) to which bacterial products bind, in particular, *E. coli* lipopolysaccharide, lead to enhanced transcription of genes responsible for expression of cytokines, chemokines, adhesion molecules, apoptotic factors and other mediators of inflammatory response associated with sepsis [8,14,23].

We have found that simultaneous stimulation of the  $\alpha$ 7nAChRs agonist and STAT3 transcription factor inhibition significantly reduces the synthesis of proinflammatory cytokines TNF- $\alpha$ , IL-1 $\beta$  and IL-6. The combined action at the combined effect of  $\alpha$ 7nAChRs agonist and STAT3 inhibitor causes an additive effect. The data obtained by us can be used in the development of promising treatments for sepsis and other inflammatory diseases.

#### Conclusion

The combined effect of  $\alpha$ 7n-acetylcholine receptors agonist (GTS-21) and STAT3 inhibitor (S3I - 201) reduce the mortality of random-bred albino mice, the blood concentrations of proinflammatory cytokines TNF- $\alpha$ , IL-1 $\beta$  and IL-6 in sepsis - the realization of the cholinergic anti-inflammatory pathway. The combined action of  $\alpha$ 7nAChRs agonist and STAT3 inhibitor causes an additive effect.

## **Bibliography**

- Byrne L and Van Haren F. "Fluid resuscitation in human sepsis: Time to rewrite history?" *Annals of Intensive Care* 7.1 (2017): 4.
- Zabrodskii PF., et al. "Role of β2-adrenoreceptors in adrenergic anti-Inflammatory mechanism in sepsis". Bulletin of Experimental Biology and Medicine 162.12 (2016): 718-721.

- 3. Martin GS. "Sepsis, severe sepsis and septic shock: changes in incidence, pathogens and outcomes". *Expert Review of Anti-infective Therapy* 10.6 (2012): 701-706.
- 4. Lin JN., *et al.* "Risk factors for mortality of bacteremic patients in the emergency department". *Academic Emergency Medicine* 16 (2009): 749-755.
- Zabrodskii PF. "Effect of armin on nonspecific resistance factors of the body and on the primary humoral immune response". *Farmakologiia I Toksikologiia* 50.1 (1987): 57-60.
- 6. Zabrodskii PF. "Variation in antiinfectious nonspecific resistance of the organism caused by cholinergic stimulation". *Bulletin of Experimental Biology and Medicine* 120.2 (1995): 809-811.
- Zabrodskii PF. "Change in the non-specific anti-infection resistance of the body exposed to cholinergic stimulation". *Bulletin* of Experimental Biology and Medicine 120.8 (1995): 164-166.
- PF Zabrodskii. "Immunotoxicology of organophosphorus compounds". Saratov (2016): 289.
- Borovikova LV., *et al.* "Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin". *Nature* 405.6785 (2000): 458-462.
- Gallowitsch-Puerta M and Pavlov VA. "Neuro-immune interactions via the cholinergic anti-inflammatory pathway". *Life Sciences* 80.24-25 (2007): 2325-2329.
- Pavlov VA., *et al.* "The cholinergic anti-inflammatory pathway: a missing link in neuroimmunomodulation". *Molecular Medicine* 9.5-8 (2003): 125-134.
- Wang H., *et al.* "Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of inflammation". *Nature* 421.6921 (2003): 384-388.
- Zabrodskii PF, *et al.* "Combined Effects of M1 Muscarinic Acetylcholine Receptor Agonist TBPB and α7n-Acetylcholine Receptor Activator GTS-21 on Mouse Mortality and Blood Concentration of Proinflammatory Cytokines in Sepsis". *Bulletin of Experimental Biology and Medicine* 162.6 (2017): 750-753.
- Zabrodskii PF., et al. "Combined Effect of NF-κB Inhibitor and β2-Adrenoreceptor Agonist on Mouse Mortality and Blood Concentration of Proinflammatory Cytokines in Sepsis". Bulletin of Experimental Biology and Medicine 162.6 (2018): 445-448.

**Citation:** Pavel Franzevich Zabrodskii. "The Realization of the Cholinergic Anti-Inflammatory Pathway Under the Influence of α7nAChRs Agonist and STAT3 Inhibitor in Sepsis". *Acta Scientific Microbiology* 3.3 (2020): 01-05.

04

- 15. Zabrodskii PF., *et al.* "Effect of  $\alpha$ 7n-acetylcholine receptor activation and antibodies to TNF- $\alpha$  on mortality of mice and concentration of proinflammatory cytokines during early stage of sepsis". *Bulletin of Experimental Biology and Medicine* 159.6 (2015): 740-742.
- Wang Z., *et al.* "The STAT3 inhibitor S3I-201 suppresses fibrogenesis and angiogenesis in liver fibrosis". *Laboratory Investigation* (2018): 11.
- Zila I., *et al.* "Vagal-immune interactions involved in cholinergic anti-inflammatory pathway". *Physiological Research* 66.2 (2017): S139- S145.
- 18. Park JW., *et al.* "Inhibition of STAT3 activity delays obesityinduced thyroid carcinogenesis in a mouse model". *Endocrine-Related Cancer* 23.1 (2016): 53-63.
- 19. Zhao J., *et al.* "Protective effect of suppressing STAT3 activity in LPS-induced acute lung injury". *American Journal of Physiology-Lung Cellular and Molecular Physiology* 311.5 (2016): L868-L880.
- Song DJ., *et al.* "Effect of lentiviral vector encoding on triggering receptor expressed on myeloid cells 1 on expression of inflammatory cytokine in septic mice infected by Bacteroides fragilis". *Zhonghua Shao Shang Za Zhi* 25.1 (2009): 36-41.
- 21. Zabrodskii PF and Mandych VG. "Immunotoxicology of xenobiotics". *Saratov Military Institute of Biological and Chemical Safety* (2007): 420.
- Norman GJ., *et al.* "Cardiopulmonary arrest and resuscitation disrupts cholinergic anti-inflammatory processes: a role for cholinergic α7 nicotinic receptors". *Journal of Neuroscience* 31.9 (2011): 3446-3452.
- Abraham E. "Nuclear factor-kappaB and its role in sepsisassociated organ failure". *Journal of Infectious Diseases* 187.2 (2003): 364-369.

## Assets from publication with us

- Prompt Acknowledgement after receiving the article
- Thorough Double blinded peer review
- Rapid Publication
- Issue of Publication Certificate
- High visibility of your Published work

Website: <u>https://www.actascientific.com/</u>

Submit Article: https://www.actascientific.com/submission.php Email us: editor@actascientific.com Contact us: +91 9182824667

**Citation**: Pavel Franzevich Zabrodskii. "The Realization of the Cholinergic Anti-Inflammatory Pathway Under the Influence of α7nAChRs Agonist and STAT3 Inhibitor in Sepsis". *Acta Scientific Microbiology* 3.3 (2020): 01-05.

05