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Experiments on random-bred albino mice showed that α7n-acetylcholine receptors (α7nAChRs) agonist (GTS-21) and STAT3 
inhibitor (S3I - 201) lead to the realization of the cholinergic anti-inflammatory pathway (the reduce the mortality of mice, the blood 
concentrations of proinflammatory cytokines TNF-α, IL-1β and IL-6 in sepsis (intraperitoneal of 2.5×109 CFUs diurnal culture of E. 
coli). The combined action of α7nAChRs agonist and STAT3 inhibitor causes an additive effect.

Introduction
Sepsis is a serious public health problem. Worldwide, the inci-

dence of sepsis ranges from 20 to 30 million cases per year, with 
the frequency of lethality increasing [1,2]. From all deaths associ-
ated with diseases and their complications, mortality from sepsis, 
depending on various factors, ranges from 12 to 60% [3,4]. For the 
first time in 1987, it was found that cholinergic stimulation sig-
nificantly reduces the mortality of albino mice from sepsis [5], and 
later proved the feasibility of using cholinomimetics for emergen-
cy activation of the body's antimicrobial resistance in sepsis [6,7]. 
The cholinergic anti-inflammatory mechanism [5] was named af-
ter the study of its implementation on the organismic, cellular and 
subcellular levels in 2000 as the “cholinergic anti-inflammatory 
pathway” [5-9].

The cholinergic anti-inflammatory pathway [6-12], includes: 
acetylcholine m-acetyl cholinergic receptor type 1 (m1AChRs) ac-
tivation of the brain, modulating the immunoregulatory function of 
the vagus nerve [9,10,13,14]; excitation of efferent fibers n. vagus; 
effect of acetylcholine on α7nAChRs of the macrophage-monocytic 

system (MMS) cells [12,14,15]. The occurrence of anti-inflammato-
ry effect in cells of MMS is provided by JAK2 kinase (tyrosine-pro-
tein kinase JAK2); STAT3 transcription factor (STAT3 - signal trans-
ducer and activator of transcription 3); NF-κB transcription factor 
(NF-κB - nuclear factor kappa-light-chain-enhancer of activated B 
cells) [9-11,13,14]. These effects lead to a decrease in mortality 
from sepsis due to the reduction of the production of proinflamma-
tory cytokines TNF-α, protein B1 - HMGB1, macrophage-inflamma-
tory protein-2 - MIP-2, interleukins - IL-1β, IL-6 [8-11,14].

It is of great interest to study the possibility of reducing mortal-
ity in sepsis and various pathological processes by stimulating or 
inhibiting various elements of the cholinergic anti-inflammatory 
pathway [13,15-17], in particular the possibility of achieving a 
therapeutic effect with activation of α7nAChRs in combination with 
inhibition of the STAT3 transcription factor [16,18,19]. 

Aim of the study

The aim of the study was to assess the combined effect of the 
α7n-acetylcholine receptors agonist and the NF-κB inhibitor on the 
implementation of the cholinergic anti-inflammatory pathway in 
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early phase of sepsis (estimation of the mortality rate of mice in 
sepsis caused by experimental peritonitis and the blood content of 
proinflammatory cytokines TNF-α, IL-1β, IL-6).

Materials and Methods
The experiments were performed on random-bred albino mice 

of both sexes weighing 18 - 22 g. The control group of mice (control 
group 1, n = 8) received intraperitoneally 2.0 ml of isotonic sodium 
chloride solution (saline) 10 - 15 minutes after the last intraperi-
toneal (i. p.) was administered of 0.5 ml of 0.05% aqueous solu-
tion of dimethyl sulfoxide - DMSO (Sigma-Aldrich), which was used 
daily for 4 days. The second group of mice (control group 2, n = 50) 
was injected for 4 days with 0.5 ml of a 0.05% aqueous solution of 
DMSO (i.p., once daily). 2 h after administration of this solution, 
mice in this group received (i. p.) 2.5×109 CFUs diurnal culture of E. 
coli in 2.0 ml of saline (sepsis modeling) [5-8,13,14,20,21]. 

The third group of mice (n = 40) was injected with α7nAChR 
agonist GTS-21 [3-(2,4-dimethoxybenzylidene)-anabas Eine dihy-
drochloride] (Sigma-Aldrich) subcutaneously, 5 mg/kg, once daily 
for 4 days (in 0.5 ml of a 0.05% aqueous solution of DMSO), taking 
into account GTS-21 half-life period of 12 - 24 h [22].

The fourth group (n = 25) was administered (i.p., once daily) for 
4 days STAT3 inhibitor (S3I-201 - 2-Hydroxy-4-[[[[(4-methylphe-
nyl)sulfonyl]oxy]acetyl]amino]-benzoic acid) (Sigma-Aldrich) at a 
dose of 5 mg/kg in 0.5 ml of a 0.05% aqueous solution of DMSO 
[18]. 

In the 5th group (n = 30) the α7nAChR agonist (GTS-21) was 
administered (once daily for 4 days) in combination the STAT3 in-
hibitor (S3I-201). The STAT3 inhibitor was administered 10 - 15 
minutes after the injection of the α7nAChR agonist. In groups 3-5, 
after 2 h after the administration of drugs, sepsis was modeled. The 
mortality of mice (groups 2 - 3) was recorded after 4 and 24 h af-
ter the sepsis modeling. The concentration of TNF-α, IL1β and IL-6 
were measured in the blood plasma of all groups of mice (groups 
1 - 5) using by ELISA (My Bio Soure) according to manufacturer's 
instructions. Determination the concentrations of proinflamma-
tory cytokines used monoclonal antibodies My Bio Source (cat. N 
- MBS494184, MBS494492, MBS335516 for TNF-α, IL-1β, and IL-6, 
respectively). Blood for research was taken from the retroorbital 
venous sinus. The data obtained were processed statistically us-
ing the Student's t-test. Differences between the parameters were 
considered reliable at p < 0.05.

Results
The α7nAChR agonist (GTS-21) caused a decrease of the mortal-

ity of mice after 4 h after the administration of the daily culture of 
E. coli (sepsis modeling) compared to the control group 2 (sepsis) 
by 2.29 times (by 22.5% - p < 0.05), and after 24 h - by 1.45 times 
(by 26.0% - p < 0.05). The STAT3 inhibitor (S3I-201) reduced mor-
tality from sepsis after 4 and 24 h after sepsis modeling compared 
with group 2, respectively, by 2.00 times (p < 0.05) (by 20.0%) 
and by 1.53 times (by 30,0%) (p < 0.05). The administration of the 
α7nAChR agonist in combination with the STAT3 inhibitor caused 
an additive effect. Thus, the mortality of mice compared with the 
control after 4 and 24 h after the administration of E. coli compared 
with the control (group 2) decreased, respectively, by 4.00 times 
(by 30.0%) (p < 0.05) and by 3,23 times (by 59.4%) (p < 0.05) 
(Table 1). It should be noted that the reduction of mice mortality 
from sepsis in the combined effect of the α7nAChR agonist and the 
STAT3 inhibitor after 24 h after sepsis modeling compared to pa-
rameters of groups 3 and 4 was significant (p < 0.05), and in 4 h 
- statistically insignificant (p > 0.05), despite the difference of 2.0 
times. The effects of the α7nAChR agonist and the STAT3 inhibitor 
in estimating mouse mortality were practically the same.

Group (series of experiments)

Term study of mortality 
after the introduction of 

E. coli, h
4 h 24 h

2nd control group (sepsis; n = 50) 40,0 ± 6,9 86,0 ± 4,9
3rd (α7nAChRs agonist GTS-21;  
n = 40) 

17,5 ± 6.4* 60,0 ± 8.0*

4rd (STAT3 inhibitor - S3I-201;  
n = 25)

20.0 ± 8.0* 56.0 ± 9.9*

5th (α7nAChRs agonist +STAT3  
inhibitor; n = 30)

10.0 ± 5,5* 26.6 ± 8.1**

Table 1: Effect of α7nAChRs agonist (GTS-21, 5 mg/kg, once daily 
for 4 days) and STAT3 inhibitor (S3I-201, 5 mg/kg, once daily for 4 
days) and their combined effect on the mice mortality after sepsis 
modeling, % (М±m).* -p <0,05 as compared to group 2); ** - p <0,05 
in comparison with the control (group 2) and groups 3; 4.

The concentration of cytokines TNF-α, IL-1β and IL-6 after the 
sepsis modeling (control group 2) in the blood of mice after 4 h 
compared with the control group 1 (intact animals) increased re-
spectively to 22.4; 17.1 and 51.9 times (p < 0.05), and the content 
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of these cytokines after 24 h (after the sepsis modeling) compared 
to their level after 4 h decreased, respectively, to 23.0; 4.4 and 8.4 
times (p < 0.05). The content of IL-1β and IL-6 after 24 h remained 

Series of experiments
ФНОα ИЛ1β ИЛ-6

4 24 4 24 4 24
Control group 1 43 ± 6 32 ± 6 36 ± 5 39 ± 7 40 ± 7 24 ± 5
Sepsis (control group 2) 966 ± 105a 42 ± 8с 615 ± 78a 141 ± 25aс 2077 ± 262a 246 ± 30aс

α7nAChRs agonist (GTS-21) (group 3) 143 ± 17ab 29 ± 5 bс 163 ± 19ab 56 ± 7 abс 214 ± 21ab 61 ± 8abс

STAT3 inhibitor (S3I-201) (group 4) 160 ± 25ab 36 ± 7с 170 ± 26ab 60 ± 11 bс 294 ± 33ab 87 ± 11abс

α7nAChR agonist + STAT3 inhibitor (group 5) 95 ± 13abd 27 ± 6с 98 ± 16abd 30 ± 6 bсd 150 ± 19abd 43 ± 7abсe

higher than in group 1 by 3.6 times (p < 0.05) and 10.3 times (p < 
0.05), respectively, and the concentration of TNF-α in groups 1 and 
2 did not differ significantly (Table 2). 

Table 2: Effect of α7nAChRs agonist (GTS-21, 5 mg/kg, once daily for 4 days) and STAT3 inhibitor (S3I-201, 5 mg/kg, once daily for 4 
days) and their combined effect on the concentration of proinflammatory cytokines in blood of mice after sepsis modeling, pg/ml (М ± 
m; n=7-8).

Note. 4 and 24 - time after modeling of sepsis, h; a -p <0.05 compared to control (group 1); b-p <0.05 compared with corresponding 
parameter for sepsis (control group 2); с -p <0.05 compared with parameter after 4 h; d -p <0,05 - in comparison with groups 3; 4; e -p 
<0,05 - in comparison with groups 4.

The α7nAChRs agonist after 4 h after sepsis modeling reduced 
the blood levels of TNF-α, IL-1β and IL-6 (group 3) compared to the 
control group 2, respectively, by 6.8; 3.8 and 9.7 times (p < 0.05). 
The blood content of these cytokines after 24 h, compared with 
their level after 4 hours decreased, respectively, by 4.9; 2.9 and 3.5 
times (p < 0.05). The concentrations of IL-1β and IL-6 (after 24 h 
after sepsis modeling) statistically significantly (p < 0.05) exceed-
ed those of the control group 1 by 1.4 and 2.5 times (p < 0.05), re-
spectively, and compared to the parameters of group 2 the content 
IL-1β and IL-6 were reduced by 2.5 and 4.0 times, respectively (p 
< 0.05). The value of TNF-α was not significantly different from the 
levels in groups 1 and 2 after 24 h after the sepsis modeling.

The STAT3 inhibitor (S3I-201) 4 h after sepsis modeling re-
duced the blood levels of TNF-α, IL-1β and IL-6 (group 4) compared 
to the control group 2, respectively, by 6.0; 2.4 and 7.1 times (p < 
0.05). The concentrations of TNF-α, IL-1β and IL-6 after 24 h after 
sepsis modeling compared with their level after 4 h decreased, re-
spectively, by 4.0; 2.8 and 3.4 times (p < 0.05). The concentrations 
of IL-1β and IL-6 after 24 h after sepsis modeling statistically sig-
nificantly (p < 0.05) exceeded those of the control group 1 by 1.5 
and 3.6 times (p < 0.05), respectively, and compared to the param-
eters of group 2, the content IL-1β and IL-6 were reduced by 2.4 

and 2.8 times, respectively (p < 0.05). The value of TNF-α was not 
significantly different from the levels in groups 1 - 3 after 24 h after 
the sepsis modeling. The blood content of TNF-α, IL-1β and IL-6 in 
groups 3 and 4 were statistically no different.

The concentrations of TNF-α, IL-1β and IL-6 in group 5 (com-
bined effect of α7nAChRs agonist and STAT3 inhibitor) compared 
with parameters of group 3 (effect of the α7nAChRs agonist) after 
4 h after sepsis modeling were lower respectively by 1.5 (p < 0.05); 
1.7 (p < 0.05) and 1.4 times (p < 0.05), and after 24 h the levels 
of IL-1β and IL-6 were less than the corresponding values in the 
group of 3 by 1.9 (p < 0, 05) and by 1.4 times (p > 0.05). The value 
of TNF-α was not significantly different from the levels in groups 
1-4 after 24 h after the sepsis modeling.

The decrease of the proinflammatory cytokines concentrations 
at the combined effect of α7nAChRs agonist and STAT3 inhibi-
tor (group 5) compared with parameters of group 4 (effect of the 
STAT3 inhibitor) was reduced in the same way as in comparison 
with parameters of group 3 (effect of α7nAChRs agonist).

The data obtained suggest that the combined action at the com-
bined effect of α7nAChRs agonist and STAT3 inhibitor causes an 
additive effect.
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Discussion
The data obtained and the results described in numerous ar-

ticles [8-10,13] suggest that the decrease in mice mortality from 
sepsis under the action of the α7nAChRs agonist is due to a de-
crease in the concentration of proinflammatory cytokines (reduc-
es the production of proinflammatory cytokines by macrophages 
and monocytes), in particular, TNF-α, IL-1β and IL-6. Activation of 
α7nAChRs of MMS cells with the participation of JAK2 kinase, NF-
κB and STAT3 transcription factor [9-11,13]. 

The NF-κB transcription factor and STAT3 transcription factor 
modulates the synthesis of proinflammatory cytokines involved 
in development of sepsis. Signal pathways initiated by Toll-like 
receptors (TLR2 and TLR4) to which bacterial products bind, in 
particular, E. coli lipopolysaccharide, lead to enhanced transcrip-
tion of genes responsible for expression of cytokines, chemokines, 
adhesion molecules, apoptotic factors and other mediators of in-
flammatory response associated with sepsis [8,14,23].

We have found that simultaneous stimulation of the α7nAChRs 
agonist and STAT3 transcription factor inhibition significantly re-
duces the synthesis of proinflammatory cytokines TNF-α, IL-1β 
and IL-6. The combined action at the combined effect of α7nAChRs 
agonist and STAT3 inhibitor causes an additive effect. The data ob-
tained by us can be used in the development of promising treat-
ments for sepsis and other inflammatory diseases.

Conclusion
The combined effect of α7n-acetylcholine receptors agonist 

(GTS-21) and STAT3 inhibitor (S3I - 201) reduce the mortality of 
random-bred albino mice, the blood concentrations of proinflam-
matory cytokines TNF-α, IL-1β and IL-6 in sepsis - the realization 
of the cholinergic anti-inflammatory pathway. The combined ac-
tion of α7nAChRs agonist and STAT3 inhibitor causes an additive 
effect.
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