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Abstract
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Eubacterial glycerol-1-phosphate dehydrogenase (G1PDH) may originate from archaebacteria by horizontal gene transfer; how-
ever, the origins of archaebacterial G1PDH remains unanswered. While recent studies show possible de novo origination of protein 
encoding genes and functional promoters, the mechanism of de novo origins of functional genes remains debatable. In this study, 
we examine the probability of de novo emergence of putative G1PDH from random sequences. Our results show that high number 
of open reading frames in random sequences and 71.8% of randomly generated sequences have 9.88% probability of being putative 
G1PDH. Hence, de novo origination archaebacterial G1PDH from random sequences is plausible.

Introduction

Glycerol-1-phosphate dehydrogenase (G1PDH), which catalyses 
nicotinamide adenine dinucleotide hydrogen (NADH) or nicotin-
amide adenine dinucleotide phosphate hydrogen (NADPH) into 
sn-glycerol-1-phosphate (G1P); is a crucial enzyme for de novo 
synthesis of archaea phospholipid [1,2]. G1P lipid backbone en-
ables archaebacteria to possess well-defined lipid membrane [3]; 
providing its host with crucial survival advantages, such as thermal 
tolerance [4]. Archaeal G1PDH was first sequenced from Methano-
thermobacter thermautotrophicus and named egsA [5], consisting 
of 1,041 base pairs with a peptide mass of 36,963Da. Although both 
archaeal G1PDH and its eubacterial/eukaryal counterpart, G3PDH, 
catalyse the reduction of DHAP in the presence of NAD(P)H, they 
share no homology and belong to separate families [6]. This is sup-
ported by Daiyasu., et al. [7] and Koga and Morii [1]. G1PDH trans-
fers the pro-R hydrogen of NADH instead of pro-S hydrogen in the 
case of G3PDH, which leads to the generation of stereospecificity 
of G1P backbone [8]. G1P stereospecificity was considered unique 

for archaeal domain, and the emergence of G1PDH has been linked 
to the separation between archaebacteria and eubacteria [9-11]. 
However, Guldan, et al. [12] reported a G1PDH homolog from Ba-
cillus subtilis, AraM, having 31% sequence identity with Archaeo-
globus fulgidus egsA and known to form a homodimer with G1PDH 
activity. Yokobori., et al. [13] proposed that eubacterial G1DPH may 
have originated from archaebacteria via horizontal gene transfer. 
Yet, the question on the origins of archaebacterial G1PDH remains.

Until recently, the emergence of new genes was thought to be 
solely driven by duplication, recombination and horizontal gene 
transfer of existing genetic materials [14] as the possibility of 
novel gene formation from non-functioning genetic sequences was 
considered unlikely [15]. However, there are evidences of protein-
encoding genes originating from noncoding sequence, termed as 
de novo origin of genes, and this process might have been active 
throughout evolution [16-19]. Horwitz and Loeb [20] first showed 
that functional promoters can originate random DNA sequences, 
which is supported by Yona., et al. [21] reporting 10% of randomly 
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generated DNA sequences can serve as functional promoters in 
Escherichia coli. At the peptide level, Ling [22] suggests that ran-
dom amino acid chains may contain putative protein domains. At 
the gene level, de novo genes were first identified in Drosophila me-
lanogaster [23] and subsequently in multiple organisms; such as, 
yeast [14,16,24], primates [25] and plants [26]. Wu and Knudson 
[14] suggest that de novo genes may have originated due to muta-
tion or DNA shuffling of non-coding DNA sequences. Most studies 
have highlighted the discoveries of de novo genes. However, how de 
novo genes can arise remains debatable [17] and can de novo genes 
be functional from the time of their emergence [28]. More specifi-
cally, what is the possibility of de novo origins of archaebacterial 
G1PDH?

In this study, we examine the possibility of de novo origins of 
archaebacterial G1PDH through the evaluation of pairwise align-
ment scores of known archaebacterial G1PDH against randomly 
generated sequences. Our result suggests that a substantial portion 
of randomly generated sequences may possess some properties of 
archaebacterial G1PDH.

Methods

Sequence Data Sets. A set of archaebacterial G1PDH sequenc-
es, hereafter known as baseline sequences, were retrieved from 
KEGG Genes using BLASTN search with Methanothermobacter 
thermautotrophicus (KEGG Gene ID mth:MTH_610 and UniProt ID 
P72010) as query sequence with default parameters and an E-val-
ue threshold of 1e-9. A set of 10,000 random sequences between 
1011 and 1086 nucleotides, which is the range of sizes of baseline 
sequences without start and stop codons, were generated using 
RANDOMSEQ [29] with 2754 adenine, 2136 thymine, 2775 gua-
nine, and 2336 cytosine per 10,000 bases; without start and stop 
codons within the sequence.

Determining open reading frames from random sequenc-
es. An open reading frame (ORF) can be defined as a sequence with 
length divisible by three and begins with a translation start and 
ends at a stop codon [30]. A set of 10 sequences of 10 kilobases 
with uniform nucleotide distribution was generated using RAN-
DOMSEQ [29] and ORFs of at least 33 nucleotides, corresponding 
to one of the shortest gene known [31], were identified.

Determining putative G1PDH from random sequences. 
Two series of pairwise sequence alignments were performed us-
ing Bactome (https://github.com/mauriceling/bactome). Both 
Smith-Waterman algorithm [32], also known as local alignment, 

and Needleman-Wunsch algorithm [33], also known as global 
alignment, were used for each series. In the first series, each base-
line sequence was pairwise aligned to each of the other baseline 
sequences and the distribution of scores were used as measure for 
putative G1PDH sequences. In the second series, each of the 10,000 
random sequence was pairwise aligned to each baseline sequence. 
A minimum and average alignment score were generated for each 
random sequence. The probability of each random sequence being 
a putative G1PDH sequence was determined by the proportion of 
baseline alignment scores below the minimum and average align-
ment score of the random sequence for stringent and relaxed cri-
teria respectively.

Results and Discussion

Characterization of Archaebacterial G1PDH. BLASTN of 
Methanothermobacter thermautotrophicus G1PDH sequence yield-
ed 161 hits. Of which, 103 entries are within the E-value threshold 
and specific to archaebacteria, known to partake in glycerophos-
pholipid metabolism pathway, and are egsA genes; forming the set 
of baseline sequences. Excluding start and stop codons, the mini-
mum and maximum nucleotide length for baseline sequences are 
1011 and 1086 respectively. The distribution of nucleobases of the 
103 baseline sequences were analysed and shown to be 27.54% 
adenine, 23.36% cytosine, 27.75% guanine, and 21.36% thymine. 
The baseline sequences were pairwise aligned, and yield a total of 
5,253 alignments (Figure 1). The mean alignment score is 740.11 
(standard deviation of 52.445 and a median score of 729), with 609 
and 1,065 as the minimum and maximum scores respectively.

Figure 1: G1P dehydrogenase local pairwise alignment score.   

196 ORFs per 10 Kilobases Found. We identified an average 
of 196 ORFs per random sequence of 10 kilobases (Figure 2). The 
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shortest ORF found consists of 36 nucleotides while the longest 
ORF consists of 498 nucleotides. Our result suggests that ORFs, 
potential protein-coding region of a gene [34], can exist randomly. 
Cardoso-Moreira and Long [35] had presented a model of de novo 
origins of ORFs through mutations. However, our results suggest 
another possible route for de novo ORF – emerging from random 
sequences without the need for mutations, which does not contra-
dict the model proposed by Cardoso-Moreira and Long [35].

Substantial random sequences with more than 9.88% 
probability as putative G1PDH. Our results show that the mini-
mum pairwise alignment score of 99.98% (n = 9,998) of the ran-
domly generated sequences are equal or higher than the minimum 
local pairwise alignment score of 609 from baseline sequences. As 
the range of pairwise alignment scores among baseline sequenc-
es represents the sequence diversity of archaebacterial G1PDH; 
therefore, if a random sequence is not likely a putative archaebac-
terial G1PDH, then its minimum pairwise alignment score with 
known archaebacterial G1PDH (baseline sequences) should be 
lower than the minimum pairwise alignment score among known 
archaebacterial G1PDH. Moreover, of the 10,000 randomly gener-
ated sequences, 7,180 (71.80%) sequences have 9.88% probabil-
ity of being putative G1PDH (Table 1). This is based on the prob-
ability that the average pairwise scores of 71.80% of the 10,000 
randomly generated sequences are above 9.88% of the 5,253 base-
line pairwise scores. At high stringency level (minimum alignment 
score), 37.44% of the randomly generated sequences have 1.87% 
probability of possess G1PDH functionality while at high leniency 
level (maximum alignment score), 51.24% of the sequences have 
more than 50% probability of being a putative functional archae-
bacterial G1PDH. 

Figure 2: Total number of ORFs identified per 10 Kilobases of 
randomly generated sequences. 

Score 
Range

Minimum 
Score

Average 
Score

Maximum 
Score

Probability 
of G1PDH 
function

< 610 99.98% 100.00% 100.00% 0.02%
611-640 99.95% 100.00% 100.00% 0.38%
641-670 37.44% 100.00% 100.00% 1.87%
671-700 0.00% 71.80% 100.00% 9.88%
701-730 0.00% 0.00% 51.24% 51.36%
731-760 0.00% 0.00% 0.01% 82.58%
761-790 0.00% 0.00% 0.00% 89.21%
791-820 0.00% 0.00% 0.00% 91.55%

Table 1: Prediction of random sequences probability of function-
ality. Random sequences minimum, average and maximum pair-
wise alignment scores are projected against baseline sequences 

alignment scores.

However, none of the 9,998 random sequences yield average 
pairwise alignment score higher than the average local pairwise 
alignment score of 740.11 from among baseline sequences (Fig-
ure 3). As the average pairwise alignment score among baseline 
sequences can be taken to present the average archaebacterial 
G1PDH gene, our results suggest that all 9,998 random sequences 
may be putative archaebacterial G1PDH. This is supported by our 
results showing that the average pairwise alignment scores of all 
random sequences are more than 83% of the average pairwise 
alignment scores among known archaebacterial G1PDH (Figure 
3). This suggests that substantial proportion of random sequences 
may have some properties of archaebacterial G1PDH. 

Figure 3: Percentage of 10,000 random sequences with average 
pairwise alignment scores above a certain percentage of  
average pairwise alignment score among archaebacterial 

G1PDH. 
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This is consistent with Yona., et al. [21] reporting about 60% of 
random sequence can function comparably to wild-type promoters 
with only 1 base mutation out of 103 bases, and is consistent with 
Ling [22] suggesting nearly 27% of random amino acid chains may 
contain putative protein domains. Although Ling [22] reports on 
amino acid chains, Neme., et al. [36] report that 25% of randomly 
generated 150 nucleotide sequences demonstrating beneficial 
effect on E. coli growth rate when expressed as RNA or peptide. 
Zhang., et al. [37] suggest an average emergence of 51.5 de novo 
genes per million years in Oryza by studying the genomes of 13 
closely related Oryza species; importantly, 56.6% of the de novo 
genes identified are translated. 

Carvunis., et al. [38] coined the term “proto-gene” to defined a 
gene born from non-genic sequence by random processes with-
out selection, and must fulfil 3 criteria; namely, the DNA sequence 
must be transcribed and translated, and the protein product must 
be beneficial to the organism. A proto-gene is the first stage of a de 
novo gene origin with a beneficial and selectible phenotype that 
selection pressure can act on [39]. With substantial proportion of 
random sequences able to function as promoters [21], it is plausi-
ble to consider that the requirement for transcription has substan-
tial chance of being randomly fulfilled. Our results demonstrate the 
feasibility of de novo origination of ORFs and putative archaebacte-
rial G1PDH from random sequences; hence, the requirement for 
translation is fulfilled. Given that G1PDH is essential for membrane 
synthesis [1-4], the requirement for beneficial function is also ful-
filled. Therefore, it is plausible to consider that archaebacterial 
G1PDH may originate de novo from random sequences.
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