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Novel recombinant MV vaccines, though in the early stages of 
development, represent a great promise for the future to combat 
different diseases. This approach may be more appropriate for an-
tigens that require surface presentation to retain their native im-
munogenic conformation, but is limited to small proteins or pep-
tides.

MVs play a key role in bacterial pathogenesis. Indeed, bacteria 
take advantage of MVs production and release for transmission of 
virulence factors, communication with host immune cells, inducing 
inflammation and regulating host immunity defence. In particular, 
MVs isolated from diverse species, such as Legionella pneumophila, 
Clostridium difficile, Porphyromonas gingivalis, Neisseria meningiti-
dis and Staphylococcus aureus have displayed immunological out-
comes, including those mediated by TLR2 and TLR4 [1-5]. More-
over, in vitro transcriptome analysis suggested that LPS structural 
changes can be used to alter immunological outcome [6]. The use 
of a novel LOS from Bartonella quintana highlighted the poten-
tial benefits of LPS-controlled immunomodulation, since this LOS 
acted as a TLR4 antagonist and anti-inflammatory mediator [7]. 
Future research on bacterial membranes from both gram-negative 
and gram-positive bacteria will be useful to better define immune 
modulation mechanisms and new possibilities for the application 
of MVs in therapeutic design. 

MVs naturally contain immunostimulatory ligands, known as 
microbial-associated molecular patterns (MAMPs), which are rec-
ognized by pathogen recognition receptors (PRRs) of immune cells. 
The PRRs activation induces an innate immune response, with the 
production of pro-inflammatory cytokines and chemokines and 
the recruitment of immune cells. MVs can carry MAMPs distally 
throughout numerous tissue types activating an effective systemic 
innate immune response in the host. Moreover, MVs possess also 
the ability to induce an adaptive immune response by inducing a 
long-lasting humoral and cellular immune response. Indeed, mice 
immunization with MVs provides protection by inducing a T-cell re-
sponse including Th1, Th17, and cytotoxic T-cells [8-11].

MV: Membrane Vesicle; TLR: Toll-Like Receptor; LPS: Lipopoly-
saccharide; LOS: Lipooligosaccharide; MAMPs: Microbial-Associ-
ated Molecular Patterns; PRRs: Pathogen Recognition Receptors; 
ClyA: Cytolysin A

At present, the rising of emerging multidrug resistant patho-
gens calls for the development of new effective vaccines. MVs from 
different bacteria have been explorated as vaccine candidates for 
their immunogenic properties. In the case of Bordetella pertussis, 
the MV vaccine resulted comparable or more effective than the 
whole cell vaccine [12-14]; in the case of Acinetobacter baumannii, 
mice vaccinated with MVs showed a stronger antibody response 
than mice vaccinated with killed bacteria or purified outer mem-
brane complexes and without the use of adjuvants [15]. Similarly, 
vaccination of mice with Staphylococcus aureus MVs induced a 
strong cell-mediated and humoral immune response without the 
requirement of an adjuvant [16,17]. Therefore, novel MV vaccines 
appear more effective than traditional vaccine alternatives for 
the broad immune response they induce. Furthermore, the self-
adjuvanting properties of MVs circumvent the need for additional 
adjuvants, which can have adverse side effects or poorly stimulate 
immune system and whose availability is limited. 

The potential of MV therapies can be increased by excluding 
toxic component, as LPS, and by packaging specific cargos or de-
sired epitopes into MVs. LPS detoxification can be achieved by de-
tergent treatment or genetic manipulations to generate bacterial 
strains with a low toxicity variant of LPS [18]. Moreover, it is fea-
sible that MVs from Gram-positive bacteria could be exploited as 
a platform for recombinant vaccine production without the need 
for LPS detoxification. On the other side the packaging of desired 
epitopes into MVs can be achieved through different methods [18]: 
1) the overexpression of a recombinant outer membrane protein, 
which can result in increased packaging into MVs, 2) the use of a 
signal sequence that drives the protein of interest to the periplas-
mic space, where it is encapsulated into MVs, 3) the selection of an 
anchor protein, as the surface protein ClyA, to ensure the effective 
incorporation into MVs.

Abbreviations

In recent years the bacterial MVs have gained a strong interest 
and represent nowadays an active and rapidly expanding area of 
research for their therapeutic potential. MVs are naturally released 
during bacterial growth in vivo and in vitro by both pathogenic and 
not-pathogenic Gram-negative and Gram-positive bacteria. They 
can have different sizes (from 20 - 300 nm) and a lipid membrane 
protects their internal cargo from nuclease and protease degra-
dation. The cargo of MVs is represented by a variety of proteins, 
toxins, enzymes and nucleic acids. Lipids are the most abundant 
component of membranes and lipoproteins, peptidoglycan, lipotei-
choic acid and LPS result to be key modulators of the host immune 
system. 

At present, even if the development of bacterial MVs as a new 
therapeutic prospective looks promising, MV research is still at the 
beginning and some issues need to be addressed before their use 
as therapeutic agents. In particular, verification of the specificity of 
MV delivery is needed to rule out toxic side effects into non-target 
tissues. 

Citation: Cinzia Giagulli. “Bacterial Membrane Vesicles: New Therapeutic Prospectives”.  Acta Scientific Microbiology 1.4 (2018): 01-02.

DOI: 10.31080/ASMI.2018.01.0030



In conclusion, bacterial MVs show different desirable attributes, 
which can be exploited for the development of novel therapies. The 
natural immunogenicity and self-adjuvanting capability of MVs can 
be used for vaccine design to induce both cell-mediated and hu-
moral immunity. Moreover, the option to display recombinant anti-
gens on MVs by molecular techniques gives great flexibility in vac-
cine design. Therefore, future studies on MV bioengineering could 
be important for the development of effective and safe therapies to 
combat different infectious, chronic and inflammatory conditions.
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